Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Perseus |
Right ascension | 04h 38m 39.39s [1] |
Declination | +41° 09′ 32.5″ [1] |
Apparent magnitude (V) | 14.8 [2] |
Characteristics | |
Evolutionary stage | DBAZ3 [1] |
Details [3] | |
Mass | 70% M☉ |
Temperature | 17,280 K |
Age | 600 Myr |
Other designations | |
2MASS J04383938+4109325, EGGR 315, WD 0435+41, Lan 542 | |
Database references | |
SIMBAD | data |
GD 61 is a white dwarf with a protoplanetary system located 150 light-years from Earth in the constellation Perseus. [4] It is thought to have been a main-sequence star of spectral type A0V with around three times the mass of the Sun that has aged and passed through a red-giant phase, leaving a dense, hot remnant that has around 70% of the Sun's mass and a surface temperature of 17,280 K. It is thought to be around 600 million years old, including both its life as a main-sequence star and as a white dwarf. [3] It has an apparent magnitude of 14.8. [2] GD 61 was first noted as a potential degenerate star in 1965, in a survey of white-dwarf suspects by astronomers from the Lowell Observatory in Arizona. [5]
In 2013, a circumstellar disk that resulted from the destruction of a water-rich asteroid was detected in close orbit around GD 61, which makes this the first detection of solid or liquid water on an extrasolar body. This asteroid would originally have been 26% water by mass, close to the water content of Ceres. [6] This evidence suggests that a planet, with a rocky surface similar to Earth's, may have existed in the past, with the asteroid thus being an artifact from this period, now possibly part of a debris field from the hypothetical planet's breakup. Such a planet would have had both a rocky surface and water, two key ingredients for life. [7] [8] The researchers used the Cosmic Origins Spectrograph on the Hubble Space Telescope to determine the elemental composition. The elements magnesium, silicon, iron, and oxygen were detected, all components of rocky planets, although the levels of oxygen were much higher than what could be accounted for. The lack of associated carbon left only one candidate for the oxygen excess—water. [7]
An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of the detection occurred in 1992. A different planet, initially detected in 1988, was confirmed in 2003. As of 1 January 2024, there are 5,576 confirmed exoplanets in 4,113 planetary systems, with 887 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and also much more about exoplanets, including composition, environmental conditions and potential for life.
A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to Earth's. A white dwarf's low luminosity comes from the emission of residual thermal energy; no fusion takes place in a white dwarf. The nearest known white dwarf is Sirius B, at 8.6 light years, the smaller component of the Sirius binary star. There are currently thought to be eight white dwarfs among the hundred star systems nearest the Sun. The unusual faintness of white dwarfs was first recognized in 1910. The name white dwarf was coined by Willem Luyten in 1922.
A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets. The large rocky asteroids Pallas and Vesta are sometimes included as well, albeit rarely. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth, as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.
In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.
A carbon planet is a theoretical type of planet that contains more carbon than oxygen. Carbon is the fourth most abundant element in the universe by mass after hydrogen, helium, and oxygen.
HD 69830 is a yellow dwarf star located 41.0 light-years away in the constellation of Puppis. In 2005, the Spitzer Space Telescope discovered a narrow ring of warm debris orbiting the star. The debris ring contains substantially more dust than the Solar System's asteroid belt. In 2006, three extrasolar planets with minimum masses comparable to Neptune were confirmed in orbit around the star, located interior to the debris ring.
An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.
Gliese 876 b is an exoplanet orbiting the red dwarf Gliese 876. It completes one orbit in approximately 61 days. Discovered in June 1998, Gliese 876 b was the first planet to be discovered orbiting a red dwarf.
Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of January 2024 have been observed directly, with even fewer being resolved from their host star.
A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.
Extraterrestrial liquid water is water in its liquid state that naturally occurs outside Earth. It is a subject of wide interest because it is recognized as one of the key prerequisites for life as we know it and thus surmised as essential for extraterrestrial life.
The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the gas giants, as well as Mars, Venus and Titan. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.
GD 362 is a white dwarf approximately 150 light years from Earth. In 2004, spectroscopic observations showed that it had a relatively high concentration of metals in its atmosphere. Since the high gravitational field of white dwarfs quickly forces heavy elements to settle towards the bottom of the atmosphere, this meant that the atmosphere was being polluted by an external source. In 2005, infrared photometric observations suggested that it was surrounded by a ring of dust with size comparable to the rings of Saturn, providing an explanation for this pollution.
HR 8799 is a roughly 30 million-year-old main-sequence star located 133.3 light-years away from Earth in the constellation of Pegasus. It has roughly 1.5 times the Sun's mass and 4.9 times its luminosity. It is part of a system that also contains a debris disk and at least four massive planets. Those planets, along with Fomalhaut b, were the first exoplanets whose orbital motion was confirmed by direct imaging. The star is a Gamma Doradus variable: its luminosity changes because of non-radial pulsations of its surface. The star is also classified as a Lambda Boötis star, which means its surface layers are depleted in iron peak elements. It is the only known star which is simultaneously a Gamma Doradus variable, a Lambda Boötis type, and a Vega-like star.
GD 40 is a white dwarf in the constellation Cetus. It is located about 212 light-years away from the Sun. The star's spectrum has been found to show traces of external of metal contamination due to disruption of an extrasolar dwarf planet or an asteroid. The disrupted object should have had roughly the same mass of the Solar System asteroid 3 Juno.
An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 January 2024, there are 5,576 confirmed exoplanets in 4,113 planetary systems, with 887 systems having more than one planet. This is a list of the most notable discoveries.
Strategic Explorations of Exoplanets and Disks with Subaru (SEEDS) is a multi-year survey that used the Subaru Telescope on Mauna Kea, Hawaii in an effort to directly image extrasolar planets and protoplanetary/debris disks around hundreds of nearby stars. SEEDS is a Japanese-led international project. It consists of some 120 researchers from a number of institutions in Japan, the U.S. and the EU. The survey's headquarters is at the National Astronomical Observatory of Japan (NAOJ) and led by Principal Investigator Motohide Tamura. The goals of the survey are to address the following key issues in the study of extrasolar planets and disks: the detection and census of exoplanets in the regions around solar-mass and massive stars; the evolution of protoplanetary disks and debris disks; and the link between exoplanets and circumstellar disks.
HD 38858 is a G-type star, much like The Sun, with one detected planet. The planet, designated HD 38858 b, is about twice the mass of Uranus and orbits in the star's habitable zone.
An exoasteroid, exo-asteroid or extrasolar asteroid, is an asteroid outside the Solar System. Exoasteroids were considered to be hypothetical, but scientific study and thorough analysis has provided evidence for their existence.