Global change

Last updated

Global change in broad sense refers to planetary-scale changes in the Earth system. It is most commonly used to encompass the variety of changes connected to the rapid increase in human activities which started around mid-20th century, i.e., the Great Acceleration. While the concept stems from research on the climate change, it is used to adopt a more holistic view of the observed changes. Global change refers to the changes of the Earth system, treated in its entirety with interacting physicochemical and biological components as well as the impact human societies have on the components and vice versa. [1] Therefore, the changes are studied through means of Earth system science.

Contents

History of global-change research

The first global efforts to address the environmental impact of human activities on the environment worldwide date before the concept of global change was introduced. Most notably, in 1972 United Nations Conference on the Human Environment was held in Stockholm, which led to United Nations Environment Programme. While the efforts were global and the effects across the globe were considered, the Earth system approach was not yet developed at this time. The events, however, started a chain of events that led to the emergence of the field of global change research.

The concept of global change was coined as researchers investigating climate change started that not only the climate but also other components of the Earth system change at a rapid pace, which can be contributed to human activities and follow dynamics similar to many societal changes. [1] It has its origins in the World Climate Research Programme, or WCRP, an international program under the leadership of Peter Bolin, which at the time of its establishment in 1980 focused on determining if the climate is changing, can it be predicted and do humans cause the change. The first results not only confirmed human impact but led to the realisation of a larger phenomenon of global change. Subsequently Peter Bolin together with James McCarthy, Paul Crutzen, Hans Oeschger and others started International Geosphere-Biosphere Programme, or IGBP, under the sponsorship of International Council for Science. [2]

In 2001, in Amsterdam, a conference was held focused around the four major global-change research programmes at the time: WCRP, IGBP, International Human Dimensions Programme (IHDP) and Diversitas (now continued as Future Earth). The conference was titled Challenges of a Changing Earth: Global Change Open Science Conference and was concluded with The Amsterdam Declaration on Global Change, best summarized in its first paragraph: [3]

"in addition to the threat of significant climate change, there is growing concern over the ever-increasing human modification of other aspects of the global environment and the consequent implications for human well-being. Basic goods and services supplied by the planetary life support system, such as food, water, clean air, and an environment conducive to human health are being affected increasingly by global change"

Causes

In the past, the main drivers of planetary-scale changes have been solar variation, plate tectonics, volcanism, proliferation and abatement of life, meteorite impact, resource depletion, changes in Earth's orbit around the Sun, and changes in the tilt of Earth on its axis. There is overwhelming evidence that now the main driver of the global change is the growing human population's demand for resources; some experts and scientists have described this phenomenon as the anthropocene epoch. [4] [5] [6] [7] [8] In the last 250 years, human-caused change has accelerated and caused climate change, widespread species extinctions, fish-stock collapse, desertification, ocean acidification, ozone depletion, pollution, and other large-scale shifts. [9]

Scientists working on the International Geosphere-Biosphere Programme have said that Earth is now operating in a "no analogue" state. [10] Measurements of Earth system processes, past and present, have led to the conclusion that the planet has moved well outside the range of natural variability in the last half million years at least. Homo sapiens have been around for about 300,000 years.

Physical evidence

Humans have always altered their environment. The advent of agriculture around 10,000 years ago led to a radical change in land use that still continues. But, the relatively small human population had little impact on a global scale until the start of the industrial revolution in 1750. This event, followed by the invention of the Haber-Bosch process in 1909, which allowed large-scale manufacture of fertilizers, led directly to rapid changes to many of the planet's most important physical, chemical and biological processes.

The 1950s marked a shift in gear: global change began accelerating. Between 1950 and 2010, the population more than doubled. In that time, rapid expansion of international trade coupled with upsurges in capital flows and new technologies, particularly information and communication technologies, led to national economies becoming more fully integrated. There was a tenfold increase in economic activity and the world's human population became more tightly connected than ever before. The period saw sixfold increases in water use and river damming. About 70 percent of the world's freshwater resource is now used for agriculture. This rises to 90 percent in India and China. Half of the Earth's land surface had now been domesticated. By 2010, urban population, for the first time, exceeded rural population. And there has been a fivefold increase in fertilizer use. Indeed, manufactured reactive nitrogen from fertilizer production and industry now exceeds global terrestrial production of reactive nitrogen. Without artificial fertilizers there would not be enough food to sustain a population of seven billion people.

These changes to the human sub-system have a direct influence on all components of the Earth system. The chemical composition of the atmosphere has changed significantly. Concentrations of important greenhouse gases, carbon dioxide, methane and nitrous oxide are rising fast. Over Antarctica a large hole in the ozone layer appeared. Fisheries collapsed: most of the world's fisheries are now fully or over-exploited. Thirty percent of tropical rainforests disappeared.

In 2000, Nobel prize-winning scientist Paul Crutzen announced the scale of change is so great that in just 250 years, human society has pushed the planet into a new geological era: the Anthropocene. This name has stuck and there are calls for the Anthropocene to be adopted officially. If it is, it may be the shortest of all geological eras. Evidence suggests that if human activities continue to change components of the Earth system, which are all interlinked, this could heave the Earth system out of one state and into a new state.

Society

Global change in a societal context encompasses social, cultural, technological, political, economic and legal change. Terms closely related to global change and society are globalization and global integration. Globalization began with long-distance trade and urbanism. The first record of long distance trading routes is in the third millennium BC. Sumerians in Mesopotamia traded with settlers in the Indus Valley, in modern-day India.

Since 1750, but more significantly, since the 1950s, global integration has accelerated. This era has witnessed incredible global changes in communications, transportation, and computer technology. Ideas, cultures, people, goods, services and money move around the planet with ease. This new global interconnectedness and free flow of information has radically altered notions of other cultures, conflicts, religions and taboos. Now, social movements can and do form at a planetary scale.

Evidence, if more were needed, of the link between social and environmental global change came with the 2008-2009 global financial crisis. The crisis pushed the planet's main economic powerhouses, the United States, Europe and much of Asia into recession. According to the Global Carbon Project, global atmospheric emissions of carbon dioxide fell from an annual growth rate of around 3.4% between 2000 and 2008, to a growth rate of about 2% in 2008. [11]

Societies everywhere are facing unprecedented challenges as a result of rapid global change (including climate change). In such a context there is need for generatively contributing to transformative social learning systems and green skills learning pathways development. Through this focus, the Chair's work contributes enhancing capacity for climate resilient development and a sustainable, socially just society in South Africa and Africa more widely. [12]

Planetary management

Humans are altering the planet's biogeochemical cycles in a largely unregulated way with limited knowledge of the consequences. [10] Without steps to effectively manage the Earth system – the planet's physical, chemical, biological and social components – it is likely there will be severe impacts on people and ecosystems. Perhaps the largest concern is that a component of the Earth system, for example, an ocean circulation, the Amazon rainforest, or Arctic sea ice, will reach a tipping point and flip from its current state to another state: flowing to not flowing, rainforest to savanna, or ice to no ice. A domino effect could ensue with other components of the Earth system changing state rapidly.

Intensive research over the last 20 years has shown that tipping points do exist in the Earth system, and wide-scale change can be rapid – a matter of decades. Potential tipping points have been identified and attempts have been made to quantify thresholds. But to date, the best efforts can only identify loosely defined "planetary boundaries" beyond which tipping points exist but their precise locations remain elusive.

There have been calls for a better way to manage the environment on a planetary scale, sometimes referred to as managing "Earth's life support system". [13] The United Nations was formed to stop wars and provide a platform for dialogue between countries. It was not created to avoid major environmental catastrophe on regional or global scales. But several international environmental conventions exist under the UN, including the Framework Convention on Climate Change, Montreal Protocol, Convention to Combat Desertification, and Convention on Biological Diversity. Additionally, the UN has two bodies charged with coordinating environmental and development activities, the United Nations Environment Programme (UNEP) and the United Nations Development Programme (UNDP).

In 2004, the IGBP published "Global Change and the Earth System, a planet under pressure." [10] The publication's executive summary concluded: "An overall, comprehensive, internally consistent strategy for stewardship of the Earth system is required". It stated that a research goal is to define and maintain a stable equilibrium in the global environment.

In 2007, France called for UNEP to be replaced by a new and more powerful organization called the "United Nations Environment Organization". The rationale was that UNEP's status as a "programme", rather than an "organization" in the tradition of the World Health Organization or the World Meteorological Organization, weakened it to the extent that it was no longer fit for purpose given current knowledge of the state of the planet. [14]

See also

Related Research Articles

<span class="mw-page-title-main">United Nations Environment Programme</span> Agency of the United Nations focused on solving environmental issues

The United Nations Environment Programme (UNEP) is responsible for coordinating responses to environmental issues within the United Nations system. It was established by Maurice Strong, its first director, after the United Nations Conference on the Human Environment in Stockholm in June 1972. Its mandate is to provide leadership, deliver science and develop solutions on a wide range of issues, including climate change, the management of marine and terrestrial ecosystems, and green economic development. The organization also develops international environmental agreements; publishes and promotes environmental science and helps national governments achieve environmental targets.

Diversitas was an international research programme aiming at integrating biodiversity science for human well-being. In December 2014 its work was transferred to the programme called Future Earth, which was sponsored by the Science and Technology Alliance for Global Sustainability, comprising the International Council for Science (ICSU), the International Social Science Council (ISSC), the Belmont Forum of funding agencies, the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the United Nations Environment Programme (UNEP), the United Nations University (UNU) and the World Meteorological Organization (WMO).

<span class="mw-page-title-main">Anthropocene</span> Proposed geologic epoch for present time

The Anthropocene is a proposed geological epoch dating from the commencement of significant human impact on Earth's geology and ecosystems, including, but not limited to, human-caused climate change. The nature of the effects of humans on Earth can be seen for example in biodiversity loss, climate change, biogeography and nocturnality parameters, changes in geomorphology and stratigraphy.

<span class="mw-page-title-main">Natural environment</span> Living and non-living things on Earth

The natural environment or natural world encompasses all living and non-living things occurring naturally, meaning in this case not artificial. The term is most often applied to Earth or some parts of Earth. This environment encompasses the interaction of all living species, climate, weather and natural resources that affect human survival and economic activity. The concept of the natural environment can be distinguished as components:

<span class="mw-page-title-main">Environmental degradation</span> Any change or disturbance to the environment perceived to be deleterious or undesirable

Environmental degradation is the deterioration of the environment through depletion of resources such as quality of air, water and soil; the destruction of ecosystems; habitat destruction; the extinction of wildlife; and pollution. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable.

This glossary of climate change is a list of definitions of terms and concepts relevant to climate change, global warming, and related topics.

<span class="mw-page-title-main">Human impact on the environment</span> Impact of human life on Earth and environment

Human impact on the environment refers to changes to biophysical environments and to ecosystems, biodiversity, and natural resources caused directly or indirectly by humans. Modifying the environment to fit the needs of society is causing severe effects including global warming, environmental degradation, mass extinction and biodiversity loss, ecological crisis, and ecological collapse. Some human activities that cause damage to the environment on a global scale include population growth, neoliberal economic policies and rapid economic growth, overconsumption, overexploitation, pollution, and deforestation. Some of the problems, including global warming and biodiversity loss, have been proposed as representing catastrophic risks to the survival of the human species.

The "World Scientists' Warning to Humanity" was a document written in 1992 by Henry W. Kendall and signed by about 1,700 leading scientists. Twenty-five years later, in November 2017, 15,364 scientists signed "World Scientists' Warning to Humanity: A Second Notice" written by William J. Ripple and seven co-authors calling for, among other things, human population planning, and drastically diminishing per capita consumption of fossil fuels, meat, and other resources. The second notice has more scientist cosigners and formal supporters than any other journal article ever published.

<span class="mw-page-title-main">Abrupt climate change</span> Form of climate change

An abrupt climate change occurs when the climate system is forced to transition at a rate that is determined by the climate system energy-balance. The transition rate is more rapid than the rate of change of the external forcing, though it may include sudden forcing events such as meteorite impacts. Abrupt climate change therefore is a variation beyond the variability of a climate. Past events include the end of the Carboniferous Rainforest Collapse, Younger Dryas, Dansgaard-Oeschger events, Heinrich events and possibly also the Paleocene–Eocene Thermal Maximum. The term is also used within the context of climate change to describe sudden climate change that is detectable over the time-scale of a human lifetime, possibly as the result of feedback loops within the climate system or tipping points.

<span class="mw-page-title-main">International Geosphere-Biosphere Programme</span> Research programme

The International Geosphere-Biosphere Programme (IGBP) was a research programme that ran from 1987 to 2015 dedicated to studying the phenomenon of global change. Its primary focus was coordinating "international research on global-scale and regional-scale interactions between Earth's biological, chemical and physical processes and their interactions with human systems."

<span class="mw-page-title-main">Potsdam Institute for Climate Impact Research</span> German research institute

The Potsdam Institute for Climate Impact Research is a German government-funded research institute addressing crucial scientific questions in the fields of global change, climate impacts, and sustainable development. Ranked among the top environmental think tanks worldwide, it is one of the leading research institutions and part of a global network of scientific and academic institutions working on questions of global environmental change. It is a member of the Leibniz Association, whose institutions perform research on subjects of high relevance to society.

<span class="mw-page-title-main">Environmental issues</span> Concerns and policies regarding the biophysical environment

Environmental issues are disruptions in the usual function of ecosystems. Further, these issues can be caused by humans or they can be natural. These issues are considered serious when the ecosystem cannot recover in the present situation, and catastrophic if the ecosystem is projected to certainly collapse.

The Earth System Science Partnership (ESSP) was a partnership under the auspices of the International Council for Science (ICSU) for the integrated study of the Earth system, the ways that it is changing, and the implications for global and regional sustainability. It included Diversitas, IGBP, the World Climate Research Program (WCRP) and IHDP. In 2012, the ESSP closed and begun its transition into Future Earth.

<span class="mw-page-title-main">Planetary boundaries</span> Limits not to be exceeded if humanity wants to survive in a safe ecosystem

Planetary boundaries are a framework to describe limits to the impacts of human activities on the Earth system. Beyond these limits, the environment may not be able to self-regulate anymore. This would mean the Earth system would leave the period of stability of the Holocene, in which human society developed. The framework is based on scientific evidence that human actions, especially those of industrialized societies since the Industrial Revolution, have become the main driver of global environmental change. According to the framework, "transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental-scale to planetary-scale systems."

Planetary management is intentional global-scale management of Earth's biological, chemical and physical processes and cycles. Planetary management also includes managing humanity’s influence on planetary-scale processes. Effective planetary management aims to prevent destabilisation of Earth's climate, protect biodiversity and maintain or improve human well-being. More specifically, it aims to benefit society and the global economy, and safeguard the ecosystem services upon which humanity depends – global climate, freshwater supply, food, energy, clean air, fertile soil, pollinators, and so on.

<span class="mw-page-title-main">Will Steffen</span> Climate scientist (1947–2023)

William Lee Steffen was an American-born Australian chemist. He was the executive director of the Australian National University (ANU) Climate Change Institute and a member of the Australian Climate Commission until its dissolution in September 2013. From 1998 to 2004, he was the executive director of the International Geosphere-Biosphere Programme, a coordinating body of national environmental change organisations based in Stockholm. Steffen was one of the founding climate councillors of the Climate Council, with whom he frequently co-authored reports, and spoke in the media on issues relating to climate change and renewable energy.

Earth system governance is a recently developed paradigm that builds on earlier notions of environmental policy and nature conservation, but puts these into the broader context of human-induced transformations of the entire earth system.

<span class="mw-page-title-main">Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants</span>

The Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (CCAC) was launched by the United Nations Environment Programme (UNEP) and six countries—Bangladesh, Canada, Ghana, Mexico, Sweden, and the United States—on 16 February 2012. The CCAC aims to catalyze rapid reductions in short-lived climate pollutants to protect human health, agriculture and the environment. To date, more than $90 million has been pledged to the Climate and Clean Air Coalition from Canada, Denmark, the European Commission, Germany, Japan, the Netherlands, Norway, Sweden, and the United States. The program is managed out of the United Nations Environmental Programme through a Secretariat in Paris, France.

Planetary Health is a multi- and transdisciplinary research paradigm, a new science for exceptional action, and a global movement. Planetary Health refers to "the health of human civilization and the state of the natural systems on which it depends". In 2015, the Rockefeller Foundation–Lancet Commission on Planetary Health launched the concept which is currently being developed towards a new health science with over 25 areas of expertise.

The Great Acceleration is the dramatic, continuous and roughly simultaneous surge across a large range of measures of human activity, first recorded in the mid-20th century and continuing to this day. Within the concept of the proposed epoch of the Anthropocene, these measures are specifically those of humanity's impact on Earth's geology and its ecosystems. In the concept, the Great Acceleration can be variously classified as the only age of the epoch to date, one of many ages of the epoch – depending on the epoch's proposed start date – or a defining feature of the epoch that is thus not an age, as well as other classifications.

References

  1. 1 2 Global change and the earth system: a planet under pressure. Global Change — the IGBP Series. Berlin: Springer. 2004. pp. 1–7. doi:10.1007/b137870. ISBN   978-3-540-26594-8.
  2. "History - IGBP". www.igbp.net.
  3. Steffen, Will (2003). Challenges of a Changing Earth: Proceedings of the Global Change Open Science Conference, Amsterdam, the Netherlands, 10-13 July 2001. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN   978-3-642-62407-0.
  4. Borenstein, Seth (14 October 2014). "With their mark on Earth, humans may name era, too". Associated Press. Retrieved 14 October 2014.
  5. Waters, C.N.; et al. (8 January 2016). "The Anthropocene is functionally and stratigraphically distinct from the Holocene". Science. 351 (6269): aad2622. doi:10.1126/science.aad2622. PMID   26744408. S2CID   206642594.
  6. Edwards, Lucy E. (30 November 2015). "What is the Anthropocene?". Eos. Vol. 96. doi:10.1029/2015EO040297.
  7. Castree, Noel (2015). "The Anthropocene: a primer for geographers". Geography. 100 (2): 66–75. doi:10.1080/00167487.2015.12093958. Archived from the original (PDF) on 2018-07-29. Retrieved 2020-04-24.
  8. Ellis, Erle (2018). Anthropocene: A Very Short Introduction. Vol. 1. Oxford University Press. doi:10.1093/actrade/9780198792987.001.0001. ISBN   978-0-19-879298-7.
  9. Dahms, Hans-Uwe; Schizas, Nikolaos V.; James, R. Arthur; Wang, Lan; Hwang, Jiang-Shiou (March 2018). "Marine hydrothermal vents as templates for global change scenarios". Hydrobiologia. 818: 1–10. doi:10.1007/s10750-018-3598-8. S2CID   4313072 via Springer.
  10. 1 2 3 "Global Change and the Earth System". Archived from the original on 2010-04-29. Retrieved 2010-03-25.
  11. "2008 Global Carbon Budget". Global Carbon Project. Archived from the original on 2010-07-06. Retrieved 2010-03-25.
  12. "Global Change Social Learning Systems Development: Transformative Learning and Green Skills Learning". www.ru.ac.za. 2018-03-19. Retrieved 2023-03-09.
  13. Sustainable Building 2000, 22-25 October 2000, Maastricht, The Netherlands: proceedings. Uitgeverij Æneas BV, 2000. 22–25 October 2000. p. 1. ISBN   978-90-75365-36-8.
  14. "Archived copy" (PDF). Archived from the original (PDF) on 2020-10-22. Retrieved 2020-10-19.{{cite web}}: CS1 maint: archived copy as title (link)