Glomus macrocarpum

Last updated

Contents

Glomus macrocarpum
Glomus macrocarpum 28311688.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Glomeromycota
Class: Glomeromycetes
Order: Glomerales
Family: Glomeraceae
Genus: Glomus
Species:
G. macrocarpum
Binomial name
Glomus macrocarpum
Tul. & Tul. 1845

Glomus macrocarpum is a vesicular-arbuscular endomycorrhizal plant pathogen in the Glomeraceae family of fungi. Also occasionally known as Endogone macrocarpa, G. macrocarpum is pathogenic to multiple plants, including tobacco and chili plants. G. macrocarpum was first discovered in the French woodlands by the Tulsane brothers in the early to mid 1800s. [1] Their first known description of G. macrocarpum was published in the New Italian Botanical Journal in 1845. [1] G. macrocarpum has since been documented in over 26 countries, including Australia, China, and Japan for example. G. macrocarpum is frequently found in grassy meadows, forests, greenhouses, and fruit orchards. It is known for its small, round-edged, and light brown to yellow-brown sporocarp. G. macrocarpum is sometimes known as the Glomerales truffle. [1]

Description

Morphology

The sporocarp of G. macrocarpum is small, usually measuring up to about 12 millimeters in diameter. The sporocarp shape ranges from globose, subglobose, elongate, to irregular. The sporocarp is also often observed to have soil (primary substrate) embedded in its surface. When the peridium is present, it appears white with a cottony texture. [2] The sporocarp color ranges from yellow-brown to light brown.

Chlamydospores that act as resting spores or survival structures are present. These allow the fungus to remain dormant during inadequate germination conditions. Once appropriate germination conditions are reached, chlamydospores form germ tubes to germinate into hyphal structures that place pressure on plant surfaces in order to infiltrate various tissues and begin forming a mycorrhizal association. Chlamydospores are globose to ellipsoid, and aseptate. [2] Spores range in size from about 100 to 350 μm in diameter. Spore walls are yellow to brown in color. [3] Spores arise from subtending hyphae that range from 12 to 25 μm in width. Hyphae are also cylindrical and lacking in pigmentation. Both young and mature spores are often evident on the sporocarp surface. The sporocarp of G. macrocarpum is a relatively fragile structure with other environmental components, such as soil, sometimes embedded in its surface. [2]

Ultrastructural studies indicate that two wall layers, containing fibrils, are present in spores. There is a slight separation zone present between the two wall layers. Spore contents are also indicated to be lipid globules from subtending hyphae as an energy source for the spores. [4]

Ecology

Glomus macrocarpum is a vesicular arbuscular mycorrhizal fungus that forms associations with many different plant types. The fungus grows in a hypogeous manner, just underneath the topsoil in various geographical locations and environments. [1] The fruiting season of G. macrocarpum occurs during the summer and fall months. [2] Until relatively recently, Glomus species were thought to be exclusively asexual organisms. However, studies have been conducted to analyze the presence of sex pheromone sensing proteins in some Glomus species. The presence of these sensing proteins is indicative that species in this genus may not be entirely asexual. However, the validity of a sexual process in Glomus species has not been confirmed. [5]

Importance

Laboratory studies of G. macrocarpum indicate that the species has both positive and negative effects on a variety of plant species, many of which are of economic importance worldwide. [6] [7]

Spore survival

Glomus macrocarpum spores have been studied and subjected to autoclaving or ethanol treatment in order to measure the ability of spores to survive under these conditions. Spores that were treated were sourced either from fresh pot cultures or from cultures stored for five years. Spores were treated with MTT stain, which causes living spores to appear red and non-living spores to appear black or dark blue. After treatment, the percentage of living spores was measured at 10, 20, 30, 40, and 72 hours. Results indicated that spores sourced from fresh pot cultures had a higher survival rate after treatment than those sourced from five year old cultures. [8] Results also indicated that after 72 hours most spores that were stained red (living) from 40 to 72 hours had turned black or dark blue and were no longer viable. [8] Since G. macrocarpum can be pathogenic and often remains in areas for a long period of time after sporocarp removal, researchers are attempting to understand the effect that time, combined with other treatments, has on spore viability.

Biological impact

Glomus macrocarpum was discovered to be a strong factor in improving essential oil quality and concentration in dill and carum plants. [6] Both of these plants are used commonly as spices, and essential oil quality and concentration is an important part of what allows plants to be used as spices. Glomus macrocarpum was found to be more effective than other Glomus species at enhancing essential oil concentrations. Analyzed plants were inoculated with G. macrocarpum inoculated soil and the essential oils in the plants were analyzed after 15 weeks, allowing for the Glomus species to form mycorrhizal associations effectively. [6] Studies found that there was a significant increase in biomass due to the mycorrhizal association with G. macrocarpum. Host plants inoculated with G. macrocarpum were observed to have higher shoot growth than that of the control group after 15 weeks. [6]

Glomus macrocarpum is one fungal species among many whose ability to enhance plant uptake of nutrients is being studied. Worldwide, crops are grown using chemical fertilizers enriched with the required nutrients for plant growth. However, this practice has proven to be unsustainable due to worsening water quality in places where these chemical fertilizers are heavily relied on. G. macrocarpum and others are being considered as a way to lessen the amount of chemical fertilizers necessary for producing crops of economic importance.

Plant host impact

Spore production of G. macrocarpum is influenced by a variety of host plants. Studies have shown that G. macrocarpum spore production significantly increases with bahiagrass as a plant host when compared to corn or sudangrass as plant hosts. Studies indicate that G. macrocarpum spore production will change significantly after at least 14 weeks after planting inoculated host plants. [9]

Habitat and geographical distribution

Glomus species are found in nearly all terrestrial habitats including arable land, deserts, grasslands, tropical forests, mesic forests, and deciduous forests. G. macrocarpum has been identified in over 26 countries  in different climates throughout the world, including: Australia, Austria, Belgium, Brazil, Canada, China, Denmark, France, Germany, Hungary, Ireland, Italy, Romania, Sweden, and the United States of America. [6] [10] [11]

Related Research Articles

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Zygomycota</span> Division or phylum of the kingdom Fungi

Zygomycota, or zygote fungi, is a former division or phylum of the kingdom Fungi. The members are now part of two phyla: the Mucoromycota and Zoopagomycota. Approximately 1060 species are known. They are mostly terrestrial in habitat, living in soil or on decaying plant or animal material. Some are parasites of plants, insects, and small animals, while others form symbiotic relationships with plants. Zygomycete hyphae may be coenocytic, forming septa only where gametes are formed or to wall off dead hyphae. Zygomycota is no longer recognised as it was not believed to be truly monophyletic.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza. They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

<span class="mw-page-title-main">Glomeromycota</span> Phylum of fungi

Glomeromycota are one of eight currently recognized divisions within the kingdom Fungi, with approximately 230 described species. Members of the Glomeromycota form arbuscular mycorrhizas (AMs) with the thalli of bryophytes and the roots of vascular land plants. Not all species have been shown to form AMs, and one, Geosiphon pyriformis, is known not to do so. Instead, it forms an endocytobiotic association with Nostoc cyanobacteria. The majority of evidence shows that the Glomeromycota are dependent on land plants for carbon and energy, but there is recent circumstantial evidence that some species may be able to lead an independent existence. The arbuscular mycorrhizal species are terrestrial and widely distributed in soils worldwide where they form symbioses with the roots of the majority of plant species (>80%). They can also be found in wetlands, including salt-marshes, and associated with epiphytic plants.

Glomus aggregatum is an arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture. Like other species in this phylum it forms obligate symbioses with plant roots, where it obtains carbon (photosynthate) from the host plant in exchange for nutrients and other benefits.

<i>Glomus</i> (fungus) Genus of arbuscular mycorrhizal fungi

Glomus is a genus of arbuscular mycorrhizal (AM) fungi, and all species form symbiotic relationships (mycorrhizae) with plant roots. Glomus is the largest genus of AM fungi, with ca. 85 species described, but is currently defined as non-monophyletic.

<i>Rhizopogon</i> Genus of fungi

Rhizopogon is a genus of ectomycorrhizal basidiomycetes in the family Rhizopogonaceae. Species form hypogeous sporocarps commonly referred to as "false truffles". The general morphological characters of Rhizopogon sporocarps are a simplex or duplex peridium surrounding a loculate gleba that lacks a columnella. Basidiospores are produced upon basidia that are borne within the fungal hymenium that coats the interior surface of gleba locules. The peridium is often adorned with thick mycelial cords, also known as rhizomorphs, that attach the sporocarp to the surrounding substrate. The scientific name Rhizopogon is Greek for 'root' (Rhiz-) 'beard' (-pogon) and this name was given in reference to the rhizomorphs found on sporocarps of many species.

<i>Thielaviopsis basicola</i> Species of fungus

Thielaviopsis basicola is the plant-pathogen fungus responsible for black root rot disease. This particular disease has a large host range, affecting woody ornamentals, herbaceous ornamentals, agronomic crops, and even vegetable crops. Examples of susceptible hosts include petunia, pansy, poinsettia, tobacco, cotton, carrot, lettuce, tomato, and others. Symptoms of this disease resemble nutrient deficiency but are truly a result of the decaying root systems of plants. Common symptoms include chlorotic lower foliage, yellowing of plant, stunting or wilting, and black lesions along the roots. The lesions along the roots may appear red at first, getting darker and turning black as the disease progresses. Black root lesions that begin in the middle of a root can also spread further along the roots in either direction. Due to the nature of the pathogen, the disease can easily be identified by the black lesions along the roots, especially when compared to healthy roots. The black lesions that appear along the roots are a result of the formation of chlamydospores, resting spores of the fungus that contribute to its pathogenicity. The chlamydospores are a dark brown-black color and cause the "discoloration" of the roots when they are produced in large amounts.

<span class="mw-page-title-main">Glomerales</span> Order of fungi

Glomerales is an order of symbiotic fungi within the phylum Glomeromycota.

Microbial inoculants, also known as soil inoculants or bioinoculants, are agricultural amendments that use beneficial rhizosphericic or endophytic microbes to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production. Although bacterial and fungal inoculants are common, inoculation with archaea to promote plant growth is being increasingly studied.

The mycorrhizosphere is the region around a mycorrhizal fungus in which nutrients released from the fungus increase the microbial population and its activities. The roots of most terrestrial plants, including most crop plants and almost all woody plants, are colonized by mycorrhiza-forming symbiotic fungi. In this relationship, the plant roots are infected by a fungus, but the rest of the fungal mycelium continues to grow through the soil, digesting and absorbing nutrients and water and sharing these with its plant host. The fungus in turn benefits by receiving photosynthetic sugars from its host. The mycorrhizosphere consists of roots, hyphae of the directly connected mycorrhizal fungi, associated microorganisms, and the soil in their direct influence.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

<i>Rhizophagus irregularis</i> Arbuscular mycorrhizal fungus used as a soil inoculant

Rhizophagus irregularis is an arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture. Rhizophagus irregularis is also commonly used in scientific studies of the effects of arbuscular mycorrhizal fungi on plant and soil improvement. Until 2001, the species was known and widely marketed as Glomus intraradices, but molecular analysis of ribosomal DNA led to the reclassification of all arbuscular fungi from Zygomycota phylum to the Glomeromycota phylum.

Orchid mycorrhizae are endomycorrhizal fungi which develop symbiotic relationships with the roots and seeds of plants of the family Orchidaceae. Nearly all orchids are myco-heterotrophic at some point in their life cycle. Orchid mycorrhizae are critically important during orchid germination, as an orchid seed has virtually no energy reserve and obtains its carbon from the fungal symbiont.

<span class="mw-page-title-main">Mycorrhiza helper bacteria</span> Group of organisms

Mycorrhiza helper bacteria (MHB) are a group of organisms that form symbiotic associations with both ectomycorrhiza and arbuscular mycorrhiza. MHBs are diverse and belong to a wide variety of bacterial phyla including both Gram-negative and Gram-positive bacteria. Some of the most common MHBs observed in studies belong to the phylas Pseudomonas and Streptomyces. MHBs have been seen to have extremely specific interactions with their fungal hosts at times, but this specificity is lost with plants. MHBs enhance mycorrhizal function, growth, nutrient uptake to the fungus and plant, improve soil conductance, aid against certain pathogens, and help promote defense mechanisms. These bacteria are naturally present in the soil, and form these complex interactions with fungi as plant root development starts to take shape. The mechanisms through which these interactions take shape are not well-understood and needs further study.

<span class="mw-page-title-main">Mucoromycota</span> Diverse group of molds

Mucoromycota is a division within the kingdom fungi. It includes a diverse group of various molds, including the common bread molds Mucor and Rhizopus. It is a sister phylum to Dikarya.

<i>Funneliformis mosseae</i> Species of fungus

Funneliformis mosseae is a species of fungus in the family Glomeraceae, which is an arbuscular mycorrhizal (AM) fungi that forms symbiotic relationships with plant roots. Funneliformis mosseae has a wide distribution worldwide, and can be found in North America, South America, Europe, Africa, Asia and Australia. Funneliformis are characterized by having an easily visible septum in the area of the spore base and are often cylindrical or funnel-shaped. Funneliformis mosseae similarly resembles Glomus caledonium, however the spore wall of Funneliformis mosseae contains three layers, whereas Gl. caledonium spore walls are composed of four layers. Funneliformis is an easily cultivated species which multiplies well in trap culture, along with its high distribution, F. mosseae is not considered endangered and is often used for experimental purposes when combined with another host.

Rhizophagus clarus is an arbuscular mycorrhizal fungus in the family Glomeraceae. The species has been shown to improve nutrient absorption and growth in several agricultural crops but is not typically applied commercially.

The International Collection of (Vesicular) Arbuscular Mycorrhizal Fungi (INVAM) is the largest collection of living arbuscular mycorrhizal fungi (AMF) and includes Glomeromycotan species from 6 continents. Curators of INVAM acquire, grow, identify, and elucidate the biology, taxonomy, and ecology of a diversity AMF with the mission to expand availability and knowledge of these symbiotic fungi. Culturing AMF presents difficulty as these fungi are obligate biotrophs that must complete their life cycle while in association with their plant hosts, while resting spores outside of the host are vulnerable to predation and degradation. Curators of INVAM have thus developed methods to overcome these challenges to increase the availability of AMF spores. The inception of this living collection of germplasm occurred in the 1980s and it takes the form of fungi growing in association with plant symbionts in the greenhouse, with spores preserved in cold storage within their associated rhizosphere. AMF spores acquired from INVAM have been used extensively in both basic and applied research projects in the fields of ecology, evolutionary biology, agroecology, and in restoration. INVAM is umbrellaed under the Kansas Biological Survey at The University of Kansas, an R1 Research Institution. The Kansas Biological Survey is also home to the well-known organization Monarch Watch. INVAM is currently located within the tallgrass prairie ecoregion, and many collaborators and researchers associated with INVAM study the role of AMF in the mediation of prairie biodiversity. James Bever and Peggy Schultz are the Curator and Director of Operation team, with Elizabeth Koziol and Terra Lubin as Associate Curators.

<i>Gigaspora margarita</i> Arbuscular Mycorrhizal Fungi

Gigaspora margarita is an Arbuscular Mycorrhizal Fungi (AMF) which means it is an obligate symbiont that creates mutualistic relationships with many different plant species. Being an AMF, G. margarita does not produce a fruiting body. All of its mycelium will be found in the soil, associating with plant roots. Though hard to distinguish between different species of AMF, microscopic distinctions can be made. A prominent morphological distinction for species in the Gigasporaceae family is their large sized spores. Gigaspora margarita is characterized by its large, white, pearl-like spores found anywhere from 260 - 400 micrometers. This is where it gets its name as margarita in Latin means pearl.

References

  1. 1 2 3 4 Berch, S.M.; Fortin, J.A (1983). "Lectotypification of Glomus macrocarpum and proposal of new combinations: Glomus austral, Glomus versiforme, and Glomus tenebrosum (Endogonaceae)". Canadian Journal of Botany. 61 (10): 2608–2617. doi:10.1139/b83-287.
  2. 1 2 3 4 McGee, P.A. (1986). "Further sporocarpic species of Glomus (Endogonaceae) from south Australia". Transactions of the British Mycological Society. 87 (1): 123–129. doi:10.1016/S0007-1536(86)80011-0.
  3. Gadgil, P.D.; Dick, M.A.; Hood, I.A.; Pennycook, S.R. (2005). "Fungi on trees and shrubs in New Zealand.". Fungi of New Zealand. Fungal Diversity Press.
  4. Maia, L.C.; Kimbrough, J.W. (1998). "Ultrastructural Studies of Spores and Hypha of a Glomus Species". International Journal of Plant Sciences. 159 (4): 581–589. doi:10.1086/297576. JSTOR   2474972. S2CID   84344675.
  5. Halary (2013). "Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont". PLOS ONE. 8, 11 (11): e80729. Bibcode:2013PLoSO...880729H. doi: 10.1371/journal.pone.0080729 . PMC   3834313 . PMID   24260466.
  6. 1 2 3 4 5 Kapoor, R.; Giri, B.; Mukerji, K.G. (2002). "Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague)". World Journal of Microbiology and Biotechnology. 18 (5): 459–463. doi:10.1023/a:1015522100497. ISSN   0959-3993. S2CID   85762777.
  7. Modjo, H.S.; Hendrix, J.W. (1986). Phytopathology (76 ed.). pp. 688–691.
  8. 1 2 An, Z.-Q.; Hendrix, J.W. (1988). "Determining Viability of Endogonaceous Spores with a Vital Stain". Mycologia. 80 (2): 259–261. doi:10.1080/00275514.1988.12025532.
  9. Struble, J.E.; Skipper, H.D. (1988). "Vesicular-Arbuscular Mycorrhizal Fungal Spore Production as Influenced by Plant Species". Plant and Soil. 109 (2): 277–280. doi:10.1007/BF02202095. JSTOR   42937566. S2CID   24780725.
  10. Jiang (2018). "Dynamics of Arbuscular Mycorrhizal Fungal Community Structure and Functioning along a Nitrogen Enrichment Gradient in an Alpine Meadow Ecosystem". The New Phytologist. 220 (4): 1222–1235. doi: 10.1111/nph.15112 . JSTOR   90026186. PMID   29600518.
  11. Jobim, K.; Vista, X.M.; Goto, B.T. (1028). "Updates on the knowledge of Arbuscular Mycorrhizal Fungi (Glomeromycotina) in the Atlantic Forest biome-an example of very high species richness in the Brazilian landscape". Mycotaxon. 133 (1): 209. doi: 10.5248/133.209 .