Goldbach's conjecture

Last updated
Goldbach's conjecture
Letter Goldbach-Euler.jpg
Letter from Goldbach to Euler dated 7 June 1742 (Latin-German) [1]
Field Number theory
Conjectured by Christian Goldbach
Conjectured in1742
Open problemYes
Consequences Goldbach's weak conjecture

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers.

Contents

The conjecture has been shown to hold for all integers less than 4×1018 but remains unproven despite considerable effort.

History

Origins

On 7 June 1742, the Prussian mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII), [2] in which he proposed the following conjecture:

dass jede Zahl, welche aus zweyen numeris primis zusammengesetzt ist, ein aggregatum so vieler numerorum primorum sey, als man will (die unitatem mit dazu gerechnet), bis auf die congeriem omnium unitatum
Every integer that can be written as the sum of two primes can also be written as the sum of as many primes as one wishes, until all terms are units.

Goldbach was following the now-abandoned convention of considering 1 to be a prime number, [3] so that a sum of units would be a sum of primes. He then proposed a second conjecture in the margin of his letter, which implies the first: [4]

... eine jede Zahl, die grösser ist als 2, ein aggregatum trium numerorum primorum sey.
Every integer greater than 2 can be written as the sum of three primes.

Euler replied in a letter dated 30 June 1742 [5] and reminded Goldbach of an earlier conversation they had had ("... so Ew vormals mit mir communicirt haben ..."), in which Goldbach had remarked that the first of those two conjectures would follow from the statement

Every positive even integer can be written as the sum of two primes.

This is in fact equivalent to his second, marginal conjecture. In the letter dated 30 June 1742, Euler stated: [6] [7]

Dass ... ein jeder numerus par eine summa duorum primorum sey, halte ich für ein ganz gewisses theorema, ungeachtet ich dasselbe nicht demonstriren kann.
That ... every even integer is a sum of two primes, I regard as a completely certain theorem, although I cannot prove it.

Partial results

The strong Goldbach conjecture is much more difficult than the weak Goldbach conjecture, which says that every odd integer greater than 5 is the sum of three primes. Using Vinogradov's method, Nikolai Chudakov, [8] Johannes van der Corput, [9] and Theodor Estermann [10] showed (1937–1938) that almost all even numbers can be written as the sum of two primes (in the sense that the fraction of even numbers up to some N which can be so written tends towards 1 as N increases). In 1930, Lev Schnirelmann proved that any natural number greater than 1 can be written as the sum of not more than C prime numbers, where C is an effectively computable constant; see Schnirelmann density. [11] [12] Schnirelmann's constant is the lowest number C with this property. Schnirelmann himself obtained C < 800000. This result was subsequently enhanced by many authors, such as Olivier Ramaré, who in 1995 showed that every even number n ≥ 4 is in fact the sum of at most 6 primes. The best known result currently stems from the proof of the weak Goldbach conjecture by Harald Helfgott, [13] which directly implies that every even number n ≥ 4 is the sum of at most 4 primes. [14] [15]

In 1924, Hardy and Littlewood showed under the assumption of the generalized Riemann hypothesis that the number of even numbers up to X violating the Goldbach conjecture is much less than X12 + c for small c. [16]

In 1948, using sieve theory methods, Alfréd Rényi showed that every sufficiently large even number can be written as the sum of a prime and an almost prime with at most K factors. [17] Chen Jingrun showed in 1973 using sieve theory that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes). [18] See Chen's theorem for further information.

In 1975, Hugh Lowell Montgomery and Bob Vaughan showed that "most" even numbers are expressible as the sum of two primes. More precisely, they showed that there exist positive constants c and C such that for all sufficiently large numbers N, every even number less than N is the sum of two primes, with at most CN1 − c exceptions. In particular, the set of even integers that are not the sum of two primes has density zero.

In 1951, Yuri Linnik proved the existence of a constant K such that every sufficiently large even number is the sum of two primes and at most K powers of 2. János Pintz and Imre Ruzsa found in 2020 that K = 8 works. [19] Assuming the generalized Riemann hypothesis, K = 7 also works, as shown by Roger Heath-Brown and Jan-Christoph Schlage-Puchta in 2002. [20]

A proof for the weak conjecture was submitted in 2013 by Harald Helfgott to Annals of Mathematics Studies series. Although the article was accepted, Helfgott decided to undertake the major modifications suggested by the referee. Despite several revisions, Helfgott's proof has not yet appeared in a peer-reviewed publication. [21] [22] [23] The weak conjecture is implied by the strong conjecture, as if n − 3 is a sum of two primes, then n is a sum of three primes. However, the converse implication and thus the strong Goldbach conjecture would remain unproven if Helfgott's proof is correct.

Computational results

For small values of n, the strong Goldbach conjecture (and hence the weak Goldbach conjecture) can be verified directly. For instance, in 1938, Nils Pipping laboriously verified the conjecture up to n = 100000. [24] With the advent of computers, many more values of n have been checked; T. Oliveira e Silva ran a distributed computer search that has verified the conjecture for n4×1018 (and double-checked up to 4×1017) as of 2013. One record from this search is that 3325581707333960528 is the smallest number that cannot be written as a sum of two primes where one is smaller than 9781. [25]

Cully-Hugill and Dudek prove [26] a (partial and conditional) result on the Riemann hypothesis: there exists a sum of two odd primes in the interval for all x ≥ 2.

Goldbach's Conjecture (Chinese :哥德巴赫猜想) is the title of the biography of Chinese mathematician and number theorist Chen Jingrun, written by Xu Chi.

The conjecture is a central point in the plot of the 1992 novel Uncle Petros and Goldbach's Conjecture by Greek author Apostolos Doxiadis, in the short story "Sixty Million Trillion Combinations" by Isaac Asimov and also in the 2008 mystery novel No One You Know by Michelle Richmond. [27]

Goldbach's conjecture is part of the plot of the 2007 Spanish film Fermat's Room .

Goldbach's conjecture is featured as the main topic of research of actress Ella Rumpf's character Marguerite in the 2023 French-Swiss film Marguerite's Theorem . [28]

Formal statement

Each of the three conjectures has a natural analog in terms of the modern definition of a prime, under which 1 is excluded. A modern version of the first conjecture is:

Every integer that can be written as the sum of two primes can also be written as the sum of as many primes as one wishes, until either all terms are two (if the integer is even) or one term is three and all other terms are two (if the integer is odd).

A modern version of the marginal conjecture is:

Every integer greater than 5 can be written as the sum of three primes.

And a modern version of Goldbach's older conjecture of which Euler reminded him is:

Every even integer greater than 2 can be written as the sum of two primes.

These modern versions might not be entirely equivalent to the corresponding original statements. For example, if there were an even integer N = p + 1 larger than 4, for p a prime, that could not be expressed as the sum of two primes in the modern sense, then it would be a counterexample to the modern version of the third conjecture (without being a counterexample to the original version). The modern version is thus probably stronger (but in order to confirm that, one would have to prove that the first version, freely applied to any positive even integer n, could not possibly rule out the existence of such a specific counterexample N). In any case, the modern statements have the same relationships with each other as the older statements did. That is, the second and third modern statements are equivalent, and either implies the first modern statement.

The third modern statement (equivalent to the second) is the form in which the conjecture is usually expressed today. It is also known as the "strong", "even", or "binary" Goldbach conjecture. A weaker form of the second modern statement, known as "Goldbach's weak conjecture", the "odd Goldbach conjecture", or the "ternary Goldbach conjecture", asserts that

Every odd integer greater than 7 can be written as the sum of three odd primes.

Heuristic justification

Sums of two primes at the intersections of three lines Goldbach partitions of the even integers from 4 to 28 300px.png
Sums of two primes at the intersections of three lines

Statistical considerations that focus on the probabilistic distribution of prime numbers present informal evidence in favour of the conjecture (in both the weak and strong forms) for sufficiently large integers: the greater the integer, the more ways there are available for that number to be represented as the sum of two or three other numbers, and the more "likely" it becomes that at least one of these representations consists entirely of primes.

Number of ways to write an even number n as the sum of two primes (sequence A002375 in the OEIS) Goldbach-1000000.png
Number of ways to write an even number n as the sum of two primes (sequence A002375 in the OEIS )

A very crude version of the heuristic probabilistic argument (for the strong form of the Goldbach conjecture) is as follows. The prime number theorem asserts that an integer m selected at random has roughly a 1/ln m chance of being prime. Thus if n is a large even integer and m is a number between 3 and n/2, then one might expect the probability of m and nm simultaneously being prime to be 1/ln m ln(nm). If one pursues this heuristic, one might expect the total number of ways to write a large even integer n as the sum of two odd primes to be roughly

Since ln nn, this quantity goes to infinity as n increases, and one would expect that every large even integer has not just one representation as the sum of two primes, but in fact very many such representations.

This heuristic argument is actually somewhat inaccurate because it assumes that the events of m and nm being prime are statistically independent of each other. For instance, if m is odd, then nm is also odd, and if m is even, then nm is even, a non-trivial relation because, besides the number 2, only odd numbers can be prime. Similarly, if n is divisible by 3, and m was already a prime other than 3, then nm would also be coprime to 3 and thus be slightly more likely to be prime than a general number. Pursuing this type of analysis more carefully, G. H. Hardy and John Edensor Littlewood in 1923 conjectured (as part of their Hardy–Littlewood prime tuple conjecture ) that for any fixed c ≥ 2, the number of representations of a large integer n as the sum of c primes n = p1 + ⋯ + pc with p1 ≤ ⋯ ≤ pc should be asymptotically equal to

where the product is over all primes p, and γc,p(n) is the number of solutions to the equation n = q1 + ⋯ + qc mod p in modular arithmetic, subject to the constraints q1, …, qc ≠ 0 mod p. This formula has been rigorously proven to be asymptotically valid for c ≥ 3 from the work of Ivan Matveevich Vinogradov, but is still only a conjecture when c = 2.[ citation needed ] In the latter case, the above formula simplifies to 0 when n is odd, and to

when n is even, where Π2 is Hardy–Littlewood's twin prime constant

This is sometimes known as the extended Goldbach conjecture. The strong Goldbach conjecture is in fact very similar to the twin prime conjecture, and the two conjectures are believed to be of roughly comparable difficulty.

Goldbach's comet; red, blue and green points correspond respectively the values 0, 1 and 2 modulo 3 of the number. Goldbachs comet.gif
Goldbach's comet; red, blue and green points correspond respectively the values 0, 1 and 2 modulo 3 of the number.

The Goldbach partition function is the function that associates to each even integer the number of ways it can be decomposed into a sum of two primes. Its graph looks like a comet and is therefore called Goldbach's comet. [29]

Goldbach's comet suggests tight upper and lower bounds on the number of representations of an even number as the sum of two primes, and also that the number of these representations depend strongly on the value modulo 3 of the number.

Although Goldbach's conjecture implies that every positive integer greater than one can be written as a sum of at most three primes, it is not always possible to find such a sum using a greedy algorithm that uses the largest possible prime at each step. The Pillai sequence tracks the numbers requiring the largest number of primes in their greedy representations. [30]

Similar problems to Goldbach's conjecture exist in which primes are replaced by other particular sets of numbers, such as the squares:

Goldbach's conjecture is used when studying computation complexity. [36] The connection is made through the Busy Beaver function, where BB(n) is the maximum number of steps taken by any n state Turing machine that halts. There is a 27 state Turing machine that halts if and only if Goldbach's conjecture is false. Hence if BB(27) was known, and the Turing machine did not stop in that number of steps, it would be known to run forever and hence no counterexamples exist (which proves the conjecture true). This is a completely impractical way to settle the conjecture; instead it is used to suggest that BB(27) will be very hard to compute, at least as difficult as settling the Goldbach conjecture.

Related Research Articles

<span class="mw-page-title-main">Prime number</span> Number divisible only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin or prime pair.

<span class="mw-page-title-main">Ulam spiral</span> Visualization of the prime numbers formed by arranging the integers into a spiral

The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised by mathematician Stanisław Ulam in 1963 and popularized in Martin Gardner's Mathematical Games column in Scientific American a short time later. It is constructed by writing the positive integers in a square spiral and specially marking the prime numbers.

In mathematics, a Fermat number, named after Pierre de Fermat (1607–1665), the first known to have studied them, is a positive integer of the form: where n is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ....

<span class="mw-page-title-main">Goldbach's weak conjecture</span> Solved conjecture about prime numbers

In number theory, Goldbach's weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, states that

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

<span class="mw-page-title-main">Analytic number theory</span> Exploring properties of the integers with complex analysis

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.

In additive number theory, the Schnirelmann density of a sequence of numbers is a way to measure how "dense" the sequence is. It is named after Russian mathematician Lev Schnirelmann, who was the first to study it.

<span class="mw-page-title-main">Powerful number</span> Numbers whose prime factors all divide the number more than once

A powerful number is a positive integer m such that for every prime number p dividing m, p2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a2b3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.

<span class="mw-page-title-main">Hexagonal number</span> Type of figurate number

A hexagonal number is a figurate number. The nth hexagonal number hn is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.

In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.

<span class="mw-page-title-main">Practical number</span> Number whose sums of distinct divisors represent all smaller numbers

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as:

<span class="mw-page-title-main">Dirichlet beta function</span>

In mathematics, the Dirichlet beta function is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.

In number theory, Vinogradov's theorem is a result which implies that any sufficiently large odd integer can be written as a sum of three prime numbers. It is a weaker form of Goldbach's weak conjecture, which would imply the existence of such a representation for all odd integers greater than five. It is named after Ivan Matveyevich Vinogradov, who proved it in the 1930s. Hardy and Littlewood had shown earlier that this result followed from the generalized Riemann hypothesis, and Vinogradov was able to remove this assumption. The full statement of Vinogradov's theorem gives asymptotic bounds on the number of representations of an odd integer as a sum of three primes. The notion of "sufficiently large" was ill-defined in Vinogradov's original work, but in 2002 it was shown that 101346 is sufficiently large. Additionally numbers up to 1020 had been checked via brute force methods, thus only a finite number of cases to check remained before the odd Goldbach conjecture would be proven or disproven. In 2013, Harald Helfgott proved Goldbach's weak conjecture for all cases.

<span class="mw-page-title-main">Prime gap</span> Difference between two successive prime numbers

A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted gn or g(pn) is the difference between the (n + 1)-st and the n-th prime numbers, i.e.

<span class="mw-page-title-main">Landau's problems</span> Four basic unsolved problems about prime numbers

At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic problems about prime numbers. These problems were characterised in his speech as "unattackable at the present state of mathematics" and are now known as Landau's problems. They are as follows:

  1. Goldbach's conjecture: Can every even integer greater than 2 be written as the sum of two primes?
  2. Twin prime conjecture: Are there infinitely many primes p such that p + 2 is prime?
  3. Legendre's conjecture: Does there always exist at least one prime between consecutive perfect squares?
  4. Are there infinitely many primes p such that p − 1 is a perfect square? In other words: Are there infinitely many primes of the form n2 + 1?

In number theory, the parity problem refers to a limitation in sieve theory that prevents sieves from giving good estimates in many kinds of prime-counting problems. The problem was identified and named by Atle Selberg in 1949. Beginning around 1996, John Friedlander and Henryk Iwaniec developed some parity-sensitive sieves that make the parity problem less of an obstacle.

A Proth number is a natural number N of the form where k and n are positive integers, k is odd and . A Proth prime is a Proth number that is prime. They are named after the French mathematician François Proth. The first few Proth primes are

References

  1. Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle (Band 1), St.-Pétersbourg 1843, pp. 125–129.
  2. http://www.math.dartmouth.edu/~euler/correspondence/letters/OO0765.pdf [ bare URL PDF ]
  3. Weisstein, Eric W. "Goldbach Conjecture". MathWorld .
  4. In the printed version published by P. H. Fuss 2 is misprinted as 1 in the marginal conjecture.
  5. http://eulerarchive.maa.org//correspondence/letters/OO0766.pdf [ bare URL PDF ]
  6. Ingham, A. E. "Popular Lectures" (PDF). Archived from the original (PDF) on 2003-06-16. Retrieved 2009-09-23.
  7. Caldwell, Chris (2008). "Goldbach's conjecture" . Retrieved 2008-08-13.
  8. Chudakov, Nikolai G. (1937). "О проблеме Гольдбаха" [On the Goldbach problem]. Doklady Akademii Nauk SSSR . 17: 335–338.
  9. Van der Corput, J. G. (1938). "Sur l'hypothèse de Goldbach" (PDF). Proc. Akad. Wet. Amsterdam (in French). 41: 76–80.
  10. Estermann, T. (1938). "On Goldbach's problem: proof that almost all even positive integers are sums of two primes". Proc. London Math. Soc. 2. 44: 307–314. doi:10.1112/plms/s2-44.4.307.
  11. Schnirelmann, L. G. (1930). "On the additive properties of numbers", first published in "Proceedings of the Don Polytechnic Institute in Novocherkassk" (in Russian), vol 14 (1930), pp. 3–27, and reprinted in "Uspekhi Matematicheskikh Nauk" (in Russian), 1939, no. 6, 9–25.
  12. Schnirelmann, L. G. (1933). First published as "Über additive Eigenschaften von Zahlen" in "Mathematische Annalen" (in German), vol. 107 (1933), 649–690, and reprinted as "On the additive properties of numbers" in "Uspekhi Matematicheskikh Nauk" (in Russian), 1940, no. 7, 7–46.
  13. Helfgott, H. A. (2013). "The ternary Goldbach conjecture is true". arXiv: 1312.7748 [math.NT].
  14. Sinisalo, Matti K. (Oct 1993). "Checking the Goldbach Conjecture up to 4 ⋅ 1011" (PDF). Mathematics of Computation. 61 (204). American Mathematical Society: 931–934. CiteSeerX   10.1.1.364.3111 . doi:10.2307/2153264. JSTOR   2153264.
  15. Rassias, M. Th. (2017). Goldbach's Problem: Selected Topics. Springer.
  16. See, for example, A new explicit formula in the additive theory of primes with applications I. The explicit formula for the Goldbach and Generalized Twin Prime Problems by Janos Pintz.
  17. Rényi, A. A. (1948). "On the representation of an even number as the sum of a prime and an almost prime". Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya (in Russian). 12: 57–78.
  18. Chen, J. R. (1973). "On the representation of a larger even integer as the sum of a prime and the product of at most two primes". Sci. Sinica. 16: 157–176.
  19. Pintz, J.; Ruzsa, I. Z. (2020-08-01). "On Linnik's approximation to Goldbach's problem. II". Acta Mathematica Hungarica . 161 (2): 569–582. doi:10.1007/s10474-020-01077-8. ISSN   1588-2632. S2CID   54613256.
  20. Heath-Brown, D. R.; Puchta, J. C. (2002). "Integers represented as a sum of primes and powers of two". Asian Journal of Mathematics . 6 (3): 535–565. arXiv: math.NT/0201299 . Bibcode:2002math......1299H. doi:10.4310/AJM.2002.v6.n3.a7. S2CID   2843509.
  21. Helfgott, H. A. (2013). "Major arcs for Goldbach's theorem". arXiv: 1305.2897 [math.NT].
  22. Helfgott, H. A. (2012). "Minor arcs for Goldbach's problem". arXiv: 1205.5252 [math.NT].
  23. "Harald Andrés Helfgott". Institut de Mathématiques de Jussieu-Paris Rive Gauche. Retrieved 2021-04-06.
  24. Pipping, Nils (1890–1982), "Die Goldbachsche Vermutung und der Goldbach-Vinogradowsche Satz". Acta Acad. Aboensis, Math. Phys. 11, 4–25, 1938.
  25. Tomás Oliveira e Silva, Goldbach conjecture verification. Retrieved 20 April 2024.
  26. Michaela Cully-Hugill and Adrian W. Dudek, An explicit mean-value estimate for the PNT in intervals
  27. "MathFiction: No One You Know (Michelle Richmond)". kasmana.people.cofc.edu.
  28. Odile Morain Le Théorème de Marguerite, in franceinfo:culture
  29. Fliegel, Henry F.; Robertson, Douglas S. (1989). "Goldbach's Comet: the numbers related to Goldbach's Conjecture". Journal of Recreational Mathematics. 21 (1): 1–7.
  30. Sloane, N. J. A. (ed.). "SequenceA066352(Pillai sequence)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  31. Mathematics Magazine , 66:1 (1993): 45–47.
  32. Margenstern, M. (1984). "Results and conjectures about practical numbers". Comptes rendus de l'Académie des Sciences . 299: 895–898.
  33. Melfi, G. (1996). "On two conjectures about practical numbers". Journal of Number Theory . 56: 205–210. doi: 10.1006/jnth.1996.0012 .
  34. "TWIN PRIME CONJECTURES" (PDF). oeis.org.
  35. Sloane, N. J. A. (ed.). "SequenceA007534(Even numbers that are not the sum of a pair of twin primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  36. "How the Slowest Computer Programs Illuminate Math's Fundamental Limits".

Further reading