Griseoxanthone C

Last updated
Griseoxanthone C
Griseoxanthone.png
Names
IUPAC name
1,6-Dihydroxy-3-methoxy-8-methylxanthen-9-one
Identifiers
3D model (JSmol)
  • InChI=1S/C15H12O5/c1-7-3-8(16)4-11-13(7)15(18)14-10(17)5-9(19-2)6-12(14)20-11/h3-6,16-17H,1-2H3
    Key: UIKVQKMDLQHSKA-UHFFFAOYSA-N
  • CC1=CC(=CC2=C1C(=O)C3=C(C=C(C=C3O2)OC)O)O
Properties
C15H12O5
Molar mass 272.256 g·mol−1
Appearanceyellowish needles
Melting point 253–255 °C (487–491 °F; 526–528 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Griseoxanthone C is an organic compound in the structural class of chemicals known as xanthones. Its chemical formula is 1,6-dihydroxy-3-methoxy-8-methylxanthen-9-one, and its molecular formula is C15H12O5. It is found in a plant and some fungi, including a lichen.

Contents

History

Griseoxanthone C was first isolated from the fungus Penicillium patulum by McMaster and colleagues in 1960. They were investigating the biosynthesis of the somewhat structurally related compound griseofulvin and discovered it in the residual material of the growth medium containing the fungi. [1] A year later, another group studying griseofulvin biosynthesis discovered that the production of griseoxanthone C could be induced by inhibiting the chlorination of griseophenone C (an intermediate in the biosynthetic pathway leading to griseofulvin), and that griseoxanthone C could be created chemically from griseophenone C. [2] Jayalakshmi and colleagues proposed a chemical synthesis of griseoxanthone C in 1974. [3]

Properties

In its purified form, griseoxanthone C exists as yellowish needles with a melting point of 253–255 °C (487–491 °F). An ethanolic solution of griseoxanthone C reacts with iron(III) chloride to produce a violet-brown colour. Its ultraviolet spectrum has four peaks of maximum absorption (λmax) at 242, 269, 309, and 340  nm. [4]

In laboratory tests, griseoxanthone C showed strong antibiotic effects toward Bacillus subtilis and methicillin-resistant Staphylococcus aureus. [5] It also has strong cytotoxicity to Hep2 liver cancer cells in in vitro experiments. [6]

Occurrence

In 1992, John Elix and Caroline Crook reported griseoxanthone C from the lichen Lecanora vinetorum . [7] It has since been reported from various other species, including the flowers of the plant Ficus hookeriana , [8] the fungi Fusarium equiseti , [9] Penicillium concentricum , [10] and Urocladium . [5]

See also

Related Research Articles

Griseofulvin

Griseofulvin is an antifungal medication used to treat a number of types of dermatophytoses (ringworm). This includes fungal infections of the nails and scalp, as well as the skin when antifungal creams have not worked. It is taken by mouth.

<i>Penicillium roqueforti</i> Species of fungus

Penicillium roqueforti is a common saprotrophic fungus in the genus Penicillium. Widespread in nature, it can be isolated from soil, decaying organic matter, and plants.

Beauvericin Chemical compound

Beauvericin is a depsipeptide with antibiotic and insecticidal effects belonging to the enniatin family. It was isolated from the fungus Beauveria bassiana, but is also produced by several other fungi, including several Fusarium species; it may therefore occur in grain contaminated with these fungi. Beauvericin is active against Gram-positive bacteria and mycobacteria, and is also capable of inducing programmed cell death in mammals.

<i>Cladia</i> Genus of fungi

Cladia is a genus of lichenized fungi in the family Cladoniaceae. Cladia species have a crustose primary thallus and a fruticose, secondary thallus, often referred to as pseudopodetium. The type species of the genus, Cladia aggregata, is widely distributed, occurring from South America, South Africa, Australasia and South-East Asia to southern Japan and India. Most of the other species are found in the Southern Hemisphere.

Trichophyton concentricum is an anthropophilic dermatophyte believed to be an etiological agent of a type of skin mycosis in humans, evidenced by scaly cutaneous patches on the body known as tinea imbricata. This fungus has been found mainly in the Pacific Islands and South America.

Cerevisterol Chemical compound

Cerevisterol (5α-ergosta-7,22-diene-3β,5,6β-triol) is a sterol. Originally described in the 1930s from the yeast Saccharomyces cerevisiae, it has since been found in several other fungi and, recently, in deep water coral. Cerevisterol has some in vitro bioactive properties, including cytotoxicity to some mammalian cell lines.

Throughout human history, fungi have been utilized as a source of food and harnessed to ferment and preserve foods and beverages. In the 20th century, humans have learned to harness fungi to protect human health, while industry has utilized fungi for large scale production of enzymes, acids, and biosurfactants. With the advent of modern nanotechnology in the 1980s, fungi have remained important by providing a greener alternative to chemically synthesized nanoparticle.

Secalonic acid

Secalonic acids are a group of chiral dimeric tetrahydroxanthones closely related to ergoflavin and ergochrysin A that are collectively called ergochromes and belong to a class of mycotoxins initially isolated as major ergot pigments from the fungi Claviceps purpurea that grows parasitically on rye grasses. From early times and particularly in medieval Europe the consumption of grains containing ergot has repeatedly lead to mass poisonings known as ergotism which was caused by toxic ergot alkaloids and mycotoxins such as the ergochromes, due to contamination of flour by C. purpurea. A cluster of genes responsible for the synthesis of secalonic acids in C. purpurea has been identified. Secalonic acid D the enantiomer of secalonic acid A is a major environmental toxin, isolated from the fungus Penicillium oxalicum, and is a major microbial contaminant of freshly-harvested corn which causes toxicity through contamination of foodstuffs.

Penicillium aethiopicum is a fungus species of the genus of Penicillium. Penicillium aethiopicum produces viridicatumtoxin and griseofulvin, two structurally interesting polyketides.

Dideoxyverticillin A Chemical compound

Dideoxyverticillin A, also known as (+)-11,11′-dideoxyverticillin A, is a complex epipolythiodioxopiperazine initially isolated from the marine fungus Penicillium sp. in 1999. It has also been found in the marine fungus Bionectriaceae, and belongs to a class of naturally occurring 2,5-diketopiperazines.

Fungal isolates have been researched for decades. Because fungi often exist in thin mycelial monolayers, with no protective shell, immune system, and limited mobility, they have developed the ability to synthesize a variety of unusual compounds for survival. Researchers have discovered fungal isolates with anticancer, antimicrobial, immunomodulatory, and other bio-active properties. The first statins, β-Lactam antibiotics, as well as a few important antifungals, were discovered in fungi.

Medicinal fungi are fungi which contain metabolites or can be induced to produce metabolites through biotechnology to develop prescription drugs. Compounds successfully developed into drugs or under research include antibiotics, anti-cancer drugs, cholesterol and ergosterol synthesis inhibitors, psychotropic drugs, immunosuppressants and fungicides.

Penicillium nordicum is an anamorph species of fungus in the genus Penicillium which produces ochratoxin A. Penicillium nordicum contaminates protein rich foods and foods with high NaCl-konzentration. It is mostly found on dry-cured meat products and cheese products

Penicillium paxilli is an anamorph, saprophytic species of the genus Penicillium which produces paxilline, paxisterol, penicillone, pyrenocine A, paspaline B and verruculogene. Penicillium paxilli is used as a model to study the biochemistry of the indol-diterepene biosynthesis

Penicillium persicinum is a species of fungus in the genus Penicillium which was isolated from soil from the Qinghai Province in China. Penicillium persicinum produces griseofulvin, lichexanthone, roquefortine C, roquefortine D, patulin and chrysogine

Penicillium raistrickii is an anamorph species of fungus in the genus Penicillium which produces griseofulvin, patulin and verruculogen.

The following outline is provided as an overview of and topical guide to fungi:

Penicillium vinaceum is an anamorph species of fungus in the genus Penicillium which produces penicillivinacine, vinaxanthone and citrmycetin.

Phomoxanthone

The phomoxanthones are a loosely defined class of natural products. The two founding members of this class are phomoxanthone A and phomoxanthone B. Other compounds were later also classified as phomoxanthones, although a unifying nomenclature has not yet been established. The structure of all phomoxanthones is derived from a dimer of two covalently linked tetrahydroxanthones, and they differ mainly in the position of this link as well as in the acetylation status of their hydroxy groups. The phomoxanthones are structurally closely related to other tetrahydroxanthone dimers such as the secalonic acids and the eumitrins. While most phomoxanthones were discovered in fungi of the genus Phomopsis, most notably in the species Phomopsis longicolla, some have also been found in Penicillium sp.

Lichexanthone Chemical compound found in some lichens

Lichexanthone is an organic compound in the structural class of chemicals known as xanthones. Lichexanthone was first isolated and identified by Japanese chemists from a species of leafy lichen in the 1940s. The compound is known to occur in many lichens, and it is important in the taxonomy of species in several genera, such as Pertusaria and Pyxine. More than a dozen lichen species have a variation of the word lichexanthone incorporated as part of their binomial name. The presence of lichexanthone in lichens causes them to fluoresce a greenish-yellow colour under long-wavelength UV light; this feature is used to help identify some species. Lichexanthone is also found in several plants, and some species of fungi that do not form lichens.

References

  1. McMaster, W.J.; Scott, A.I.; Trippett, S. (1960). "894. Metabolic products of Penicillium patulum". Journal of the Chemical Society (Resumed): 4628–4361. doi:10.1039/jr9600004628.
  2. Rhodes, A.; Boothroyd, B.; McGonagle, M.P.; Somerfield, G.A. (1961). "Biosynthesis of griseofulvin: the methylated benzophenone intermediates". Biochemical Journal. 81 (1): 28–37. doi:10.1042/bj0810028. PMC   1243292 . PMID   14491779.
  3. Jayalakshmi, V.; Seshadri, T.R.; Neelakantan, S.; Thillaichidambaram, N. (1974). "Synthesis of griseoxanthone-C". Indian Journal of Chemistry. 12: 441–443.
  4. Huneck, Siegfried (1996). Identification of Lichen Substances. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 210. ISBN   978-3-642-85245-9. OCLC   851387266.
  5. 1 2 Wang, Quan-Xin; Bao, Li; Yang, Xiao-Li; Guo, Hui; Yang, Rui-Nan; Ren, Biao; Zhang, Li-Xin; Dai, Huan-Qin; Guo, Liang-Dong; Liu, Hong-Wei (2012). "Polyketides with antimicrobial activity from the solid culture of an endolichenic fungus Ulocladium sp". Fitoterapia. 83 (1): 209–214. doi:10.1016/j.fitote.2011.10.013. PMID   22061662.
  6. Hawas, Usama W.; Farrag, Abdel Razik H.; Ahmed, Eman F.; Abou El-Kassem, Lamia T. (2018). "Cytotoxic effect of Fusarium equiseti fungus metabolites against N-nitrosodiethylamine- and CCL4-induced hepatocarcinogenesis in rats". Pharmaceutical Chemistry Journal. 52 (4): 326–333. doi:10.1007/s11094-018-1816-3. S2CID   49868998.
  7. Elix, John A.; Crook, Caroline E. (1992). "The joint occurrence of chloroxanthones in lichens, and a further thirteen new lichen xanthones". The Bryologist. 95 (1): 52–64. doi:10.2307/3243785. JSTOR   3243785.
  8. Wei, Gui Qiong; Zheng, Rong; Yang, Xiao Hong (2012). "Extraction and the chemical composition analysis of the essential oil flowers of Ficus hookeriana Corner". Advanced Materials Research. Trans Tech Publications, Ltd. 581–582: 94–99. doi:10.4028/www.scientific.net/amr.581-582.94. S2CID   96296834.
  9. Hawas, Usama; Al-Farawati, Radwan; Abou El-Kassem, Lamia; Turki, Adnan (2016). "Different culture metabolites of the Red Sea fungus Fusarium equiseti optimize the inhibition of Hepatitis C virus NS3/4A protease (HCV PR)". Marine Drugs. 14 (10): 190. doi: 10.3390/md14100190 . PMC   5082338 . PMID   27775589.
  10. Ali, Tehane; Inagaki, Masanori; Chai, Hee-byung; Wieboldt, Thomas; Rapplye, Chad; Rakotondraibe, L. Harinantenaina (2017). "Halogenated compounds from directed fermentation of Penicillium concentricum, an endophytic fungus of the liverwort Trichocolea tomentella". Journal of Natural Products. 80 (5): 1397–1403. doi:10.1021/acs.jnatprod.6b01069. PMID   28409637.