Griseoxanthone C

Last updated
Griseoxanthone C
Griseoxanthone.png
Names
IUPAC name
1,6-Dihydroxy-3-methoxy-8-methylxanthen-9-one
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C15H12O5/c1-7-3-8(16)4-11-13(7)15(18)14-10(17)5-9(19-2)6-12(14)20-11/h3-6,16-17H,1-2H3
    Key: UIKVQKMDLQHSKA-UHFFFAOYSA-N
  • CC1=CC(=CC2=C1C(=O)C3=C(C=C(C=C3O2)OC)O)O
Properties
C15H12O5
Molar mass 272.256 g·mol−1
Appearanceyellowish needles
Melting point 253–255 °C (487–491 °F; 526–528 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Griseoxanthone C is an organic compound in the structural class of chemicals known as xanthones. Its chemical formula is 1,6-dihydroxy-3-methoxy-8-methylxanthen-9-one, and its molecular formula is C15H12O5. It is found in a plant and some fungi, including a lichen.

Contents

History

Griseoxanthone C was first isolated from the fungus Penicillium patulum by McMaster and colleagues in 1960. They were investigating the biosynthesis of the somewhat structurally related compound griseofulvin and discovered it in the residual material of the growth medium containing the fungi. [1] A year later, another group studying griseofulvin biosynthesis discovered that the production of griseoxanthone C could be induced by inhibiting the chlorination of griseophenone C (an intermediate in the biosynthetic pathway leading to griseofulvin), and that griseoxanthone C could be created chemically from griseophenone C. [2] Jayalakshmi and colleagues proposed a chemical synthesis of griseoxanthone C in 1974. [3]

Properties

In its purified form, griseoxanthone C exists as yellowish needles with a melting point of 253–255 °C (487–491 °F). An ethanolic solution of griseoxanthone C reacts with iron(III) chloride to produce a violet-brown colour. Its ultraviolet spectrum has four peaks of maximum absorption (λmax) at 242, 269, 309, and 340  nm. [4]

In laboratory tests, griseoxanthone C showed strong antibiotic effects toward Bacillus subtilis and methicillin-resistant Staphylococcus aureus. [5] It also has strong cytotoxicity to Hep2 liver cancer cells in in vitro experiments. [6]

Occurrence

In 1992, John Elix and Caroline Crook reported griseoxanthone C from the lichen Lecanora vinetorum . [7] It has since been reported from various other species, including the flowers of the plant Ficus hookeriana , [8] the fungi Fusarium equiseti , [9] Penicillium concentricum , [10] and Urocladium . [5]

See also

Related Research Articles

<span class="mw-page-title-main">Griseofulvin</span> Antifungal medication used for dermatophytoses

Griseofulvin is an antifungal medication used to treat a number of types of dermatophytoses (ringworm). This includes fungal infections of the nails and scalp, as well as the skin when antifungal creams have not worked. It is taken by mouth.

<i>Penicillium roqueforti</i> Species of fungus

Penicillium roqueforti is a common saprotrophic fungus in the genus Penicillium. Widespread in nature, it can be isolated from soil, decaying organic matter, and plants.

<span class="mw-page-title-main">Gliotoxin</span> Chemical compound

Gliotoxin is a sulfur-containing mycotoxin that belongs to a class of naturally occurring 2,5-diketopiperazines produced by several species of fungi, especially those of marine origin. It is the most prominent member of the epipolythiopiperazines, a large class of natural products featuring a diketopiperazine with di- or polysulfide linkage. These highly bioactive compounds have been the subject of numerous studies aimed at new therapeutics. Gliotoxin was originally isolated from Gliocladium fimbriatum, and was named accordingly. It is an epipolythiodioxopiperazine metabolite that is one of the most abundantly produced metabolites in human invasive Aspergillosis (IA).

Trichophyton concentricum is an anthropophilic dermatophyte believed to be an etiological agent of a type of skin mycosis in humans, evidenced by scaly cutaneous patches on the body known as tinea imbricata. This fungus has been found mainly in the Pacific Islands and South America.

<i>Penicillium chrysogenum</i> Species of fungus

Penicillium chrysogenum is a species of fungus in the genus Penicillium. It is common in temperate and subtropical regions and can be found on salted food products, but it is mostly found in indoor environments, especially in damp or water-damaged buildings. It has been recognised as a species complex that includes P. notatum, P. meleagrinum, and P. cyaneofulvum. Molecular phylogeny has established that Alexander Fleming's first discovered penicillin producing strain is of a distinct species, P. rubens, and not of P. notatum. It has rarely been reported as a cause of human disease. It is the source of several β-lactam antibiotics, most significantly penicillin. Other secondary metabolites of P. chrysogenum include roquefortine C, meleagrin, chrysogine, 6-MSA YWA1/melanin, andrastatin A, fungisporin, secalonic acids, sorbicillin, and PR-toxin.

<span class="mw-page-title-main">Marine fungi</span> Species of fungi that live in marine or estuarine environments

Marine fungi are species of fungi that live in marine or estuarine environments. They are not a taxonomic group, but share a common habitat. Obligate marine fungi grow exclusively in the marine habitat while wholly or sporadically submerged in sea water. Facultative marine fungi normally occupy terrestrial or freshwater habitats, but are capable of living or even sporulating in a marine habitat. About 444 species of marine fungi have been described, including seven genera and ten species of basidiomycetes, and 177 genera and 360 species of ascomycetes. The remainder of the marine fungi are chytrids and mitosporic or asexual fungi. Many species of marine fungi are known only from spores and it is likely a large number of species have yet to be discovered. In fact, it is thought that less than 1% of all marine fungal species have been described, due to difficulty in targeting marine fungal DNA and difficulties that arise in attempting to grow cultures of marine fungi. It is impracticable to culture many of these fungi, but their nature can be investigated by examining seawater samples and undertaking rDNA analysis of the fungal material found.

Throughout human history, fungi have been utilized as a source of food and harnessed to ferment and preserve foods and beverages. In the 20th century, humans have learned to harness fungi to protect human health, while industry has utilized fungi for large scale production of enzymes, acids, and biosurfactants. With the advent of modern nanotechnology in the 1980s, fungi have remained important by providing a greener alternative to chemically synthesized nanoparticle.

<span class="mw-page-title-main">Secalonic acid</span> Group of chemical compounds

Secalonic acids are a group of xanthone derivatives closely related to ergoflavin and ergochrysin A that are collectively called ergochromes and belong to a class of mycotoxins initially isolated as major ergot pigments from the fungi Claviceps purpurea that grows parasitically on rye grasses. From early times and particularly in medieval Europe the consumption of grains containing ergot has repeatedly lead to mass poisonings known as ergotism which was caused by toxic ergot alkaloids and mycotoxins such as the ergochromes, due to contamination of flour by C. purpurea. A cluster of genes responsible for the synthesis of secalonic acids in C. purpurea has been identified. Secalonic acid D the enantiomer of secalonic acid A is a major environmental toxin, isolated from the fungus Penicillium oxalicum, and is a major microbial contaminant of freshly-harvested corn which causes toxicity through contamination of foodstuffs.

Fungal isolates have been researched for decades. Because fungi often exist in thin mycelial monolayers, with no protective shell, immune system, and limited mobility, they have developed the ability to synthesize a variety of unusual compounds for survival. Researchers have discovered fungal isolates with anticancer, antimicrobial, immunomodulatory, and other bio-active properties. The first statins, β-Lactam antibiotics, as well as a few important antifungals, were discovered in fungi.

Medicinal fungi are fungi that contain metabolites or can be induced to produce metabolites through biotechnology to develop prescription drugs. Compounds successfully developed into drugs or under research include antibiotics, anti-cancer drugs, cholesterol and ergosterol synthesis inhibitors, psychotropic drugs, immunosuppressants and fungicides.

Penicillium paxilli is an anamorph, saprophytic species of the genus Penicillium which produces paxilline, paxisterol, penicillone, pyrenocine A, paspaline B and verruculogene. Penicillium paxilli is used as a model to study the biochemistry of the indol-diterepene biosynthesis

Penicillium persicinum is a species of fungus in the genus Penicillium which was isolated from soil from the Qinghai Province in China. Penicillium persicinum produces griseofulvin, lichexanthone, roquefortine C, roquefortine D, patulin and chrysogine

Penicillium raistrickii is an anamorph species of fungus in the genus Penicillium which produces griseofulvin, patulin and verruculogen.

The following outline is provided as an overview of and topical guide to fungi and mycology:

Penicillium vinaceum is an anamorph species of fungus in the genus Penicillium which produces penicillivinacine, vinaxanthone and citromycetin.

<span class="mw-page-title-main">Phomoxanthone</span> Class of chemical compounds

The phomoxanthones are a loosely defined class of natural products. The two founding members of this class are phomoxanthone A and phomoxanthone B. Other compounds were later also classified as phomoxanthones, although a unifying nomenclature has not yet been established. The structure of all phomoxanthones is derived from a dimer of two covalently linked tetrahydroxanthones, and they differ mainly in the position of this link as well as in the acetylation status of their hydroxy groups. The phomoxanthones are structurally closely related to other tetrahydroxanthone dimers such as the secalonic acids and the eumitrins. While most phomoxanthones were discovered in fungi of the genus Phomopsis, most notably in the species Phomopsis longicolla, some have also been found in Penicillium sp.

<span class="mw-page-title-main">Tetrahydroxanthone</span> Class of chemical compounds

Tetrahydroxanthones are natural products formally derived by partial reduction of xanthone. They are produced by various fungi, bacteria, and plants. Some are precursors to larger xanthone natural products. One example is neosartorin, composed of 5-acetylblennolide A and blennolide C, exhibits antibacterial activity against Gram-positive bacteria, notably including Staphylococcus aureus.

<span class="mw-page-title-main">Lichexanthone</span> Chemical compound found in some lichens

Lichexanthone is an organic compound in the structural class of chemicals known as xanthones. Lichexanthone was first isolated and identified by Japanese chemists from a species of leafy lichen in the 1940s. The compound is known to occur in many lichens, and it is important in the taxonomy of species in several genera, such as Pertusaria and Pyxine. More than a dozen lichen species have a variation of the word lichexanthone incorporated as part of their binomial name. The presence of lichexanthone in lichens causes them to fluoresce a greenish-yellow colour under long-wavelength UV light; this feature is used to help identify some species. Lichexanthone is also found in several plants, and some species of fungi that do not form lichens.

Lichen products, also known as lichen substances, are organic compounds produced by a lichen. Specifically, they are secondary metabolites. Lichen products are represented in several different chemical classes, including terpenoids, orcinol derivatives, chromones, xanthones, depsides, and depsidones. Over 800 lichen products of known chemical structure have been reported in the scientific literature, and most of these compounds are exclusively found in lichens. Examples of lichen products include usnic acid, atranorin, lichexanthone, salazinic acid, and isolichenan, an α-glucan. Many lichen products have biological activity, and research into these effects is ongoing.

Lecanora vinetorum is a rare species of crustose lichen in the family Lecanoraceae. Found in Central Europe, it was formally described as a new species in 1968 by lichenologists Josef Poelt and Siegfried Huneck. The type specimen was collected from the San Michele Appiano region of Trentino-Alto Adige ; there it was found growing on vineyard frames. The species epithet vinetorum refers to its habitat.

References

  1. McMaster, W.J.; Scott, A.I.; Trippett, S. (1960). "894. Metabolic products of Penicillium patulum". Journal of the Chemical Society (Resumed): 4628–4361. doi:10.1039/jr9600004628.
  2. Rhodes, A.; Boothroyd, B.; McGonagle, M.P.; Somerfield, G.A. (1961). "Biosynthesis of griseofulvin: the methylated benzophenone intermediates". Biochemical Journal. 81 (1): 28–37. doi:10.1042/bj0810028. PMC   1243292 . PMID   14491779.
  3. Jayalakshmi, V.; Seshadri, T.R.; Neelakantan, S.; Thillaichidambaram, N. (1974). "Synthesis of griseoxanthone-C". Indian Journal of Chemistry. 12: 441–443.
  4. Huneck, Siegfried (1996). Identification of Lichen Substances. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 210. ISBN   978-3-642-85245-9. OCLC   851387266.
  5. 1 2 Wang, Quan-Xin; Bao, Li; Yang, Xiao-Li; Guo, Hui; Yang, Rui-Nan; Ren, Biao; Zhang, Li-Xin; Dai, Huan-Qin; Guo, Liang-Dong; Liu, Hong-Wei (2012). "Polyketides with antimicrobial activity from the solid culture of an endolichenic fungus Ulocladium sp". Fitoterapia. 83 (1): 209–214. doi:10.1016/j.fitote.2011.10.013. PMID   22061662.
  6. Hawas, Usama W.; Farrag, Abdel Razik H.; Ahmed, Eman F.; Abou El-Kassem, Lamia T. (2018). "Cytotoxic effect of Fusarium equiseti fungus metabolites against N-nitrosodiethylamine- and CCL4-induced hepatocarcinogenesis in rats". Pharmaceutical Chemistry Journal. 52 (4): 326–333. doi:10.1007/s11094-018-1816-3. S2CID   49868998.
  7. Elix, John A.; Crook, Caroline E. (1992). "The joint occurrence of chloroxanthones in lichens, and a further thirteen new lichen xanthones". The Bryologist. 95 (1): 52–64. doi:10.2307/3243785. JSTOR   3243785.
  8. Wei, Gui Qiong; Zheng, Rong; Yang, Xiao Hong (2012). "Extraction and the chemical composition analysis of the essential oil flowers of Ficus hookeriana Corner". Advanced Materials Research. 581–582. Trans Tech Publications, Ltd.: 94–99. doi:10.4028/www.scientific.net/amr.581-582.94. S2CID   96296834.
  9. Hawas, Usama; Al-Farawati, Radwan; Abou El-Kassem, Lamia; Turki, Adnan (2016). "Different culture metabolites of the Red Sea fungus Fusarium equiseti optimize the inhibition of Hepatitis C virus NS3/4A protease (HCV PR)". Marine Drugs. 14 (10): 190. doi: 10.3390/md14100190 . PMC   5082338 . PMID   27775589.
  10. Ali, Tehane; Inagaki, Masanori; Chai, Hee-byung; Wieboldt, Thomas; Rapplye, Chad; Rakotondraibe, L. Harinantenaina (2017). "Halogenated compounds from directed fermentation of Penicillium concentricum, an endophytic fungus of the liverwort Trichocolea tomentella". Journal of Natural Products. 80 (5): 1397–1403. doi:10.1021/acs.jnatprod.6b01069. PMID   28409637.