Hadwiger number

Last updated
A graph with four connected subgraphs that, when contracted, form a complete graph. It has no five-vertex complete minor by Wagner's theorem, so its Hadwiger number is exactly four. Hadwiger conjecture.svg
A graph with four connected subgraphs that, when contracted, form a complete graph. It has no five-vertex complete minor by Wagner's theorem, so its Hadwiger number is exactly four.

In graph theory, the Hadwiger number of an undirected graph G is the size of the largest complete graph that can be obtained by contracting edges of G. Equivalently, the Hadwiger number h(G) is the largest number n for which the complete graph Kn is a minor of G, a smaller graph obtained from G by edge contractions and vertex and edge deletions. The Hadwiger number is also known as the contraction clique number of G [1] or the homomorphism degree of G. [2] It is named after Hugo Hadwiger, who introduced it in 1943 in conjunction with the Hadwiger conjecture, which states that the Hadwiger number is always at least as large as the chromatic number of G.

Contents

The graphs that have Hadwiger number at most four have been characterized by Wagner (1937). The graphs with any finite bound on the Hadwiger number are sparse, and have small chromatic number. Determining the Hadwiger number of a graph is NP-hard but fixed-parameter tractable.

Graphs with small Hadwiger number

A graph G has Hadwiger number at most two if and only if it is a forest, for a three-vertex complete minor can only be formed by contracting a cycle in G.

A graph has Hadwiger number at most three if and only if its treewidth is at most two, which is true if and only if each of its biconnected components is a series–parallel graph.

A clique-sum of two planar graphs and the Wagner graph, forming a larger graph with Hadwiger number four. Clique-sum.svg
A clique-sum of two planar graphs and the Wagner graph, forming a larger graph with Hadwiger number four.

Wagner's theorem, which characterizes the planar graphs by their forbidden minors, implies that the planar graphs have Hadwiger number at most four. In the same paper that proved this theorem, Wagner (1937) also characterized the graphs with Hadwiger number at most four more precisely: they are graphs that can be formed by clique-sum operations that combine planar graphs with the eight-vertex Wagner graph.

The graphs with Hadwiger number at most five include the apex graphs and the linklessly embeddable graphs, both of which have the complete graph K6 among their forbidden minors. [3]

Sparsity

Every graph with n vertices and Hadwiger number k has edges. This bound is tight: for every k, there exist graphs with Hadwiger number k that have edges. [4] If a graph G has Hadwiger number k, then all of its subgraphs also have Hadwiger number at most k, and it follows that G must have degeneracy . Therefore, the graphs with bounded Hadwiger number are sparse graphs.

Coloring

The Hadwiger conjecture states that the Hadwiger number is always at least as large as the chromatic number of G. That is, every graph with Hadwiger number k should have a graph coloring with at most k colors. The case k = 4 is equivalent (by Wagner's characterization of the graphs with this Hadwiger number) to the four color theorem on colorings of planar graphs, and the conjecture has also been proven for k ≤ 5, but remains unproven for larger values of k. [5]

Because of their low degeneracy, the graphs with Hadwiger number at most k can be colored by a greedy coloring algorithm using colors.

Computational complexity

Testing whether the Hadwiger number of a given graph is at least a given value k is NP-complete, [6] from which it follows that determining the Hadwiger number is NP-hard. However, the problem is fixed-parameter tractable: there is an algorithm for finding the largest clique minor in an amount of time that depends only polynomially on the size of the graph, but exponentially in h(G). [7] Additionally, polynomial time algorithms can approximate the Hadwiger number significantly more accurately than the best polynomial-time approximation (assuming P  NP) to the size of the largest complete subgraph. [7]

The achromatic number of a graph G is the size of the largest clique that can be formed by contracting a family of independent sets in G.

Uncountable clique minors in infinite graphs may be characterized in terms of havens, which formalize the evasion strategies for certain pursuit–evasion games: if the Hadwiger number is uncountable, then it equals the largest order of a haven in the graph. [8]

Every graph with Hadwiger number k has at most n2O(k log(log k)) cliques (complete subgraphs). [9]

Halin (1976) defines a class of graph parameters that he calls S-functions, which include the Hadwiger number. These functions from graphs to integers are required to be zero on graphs with no edges, to be minor-monotone, [lower-alpha 1] to increase by one when a new vertex is added that is adjacent to all previous vertices, and to take the larger value from the two subgraphs on either side of a clique separator. The set of all such functions forms a complete lattice under the operations of elementwise minimization and maximization. The bottom element in this lattice is the Hadwiger number, and the top element is the treewidth.

Footnotes

  1. If a function f is minor-monotone then if H is a minor of G then f(H) ≤ f(G).

Notes

  1. Bollobás, Catlin & Erdős (1980).
  2. Halin (1976).
  3. Robertson, Seymour & Thomas (1993b).
  4. Kostochka (1984); Thomason (2001). The letters O and Ω in these expressions invoke big O notation.
  5. Robertson, Seymour & Thomas (1993a).
  6. Eppstein (2009).
  7. 1 2 Alon, Lingas & Wahlen (2007)
  8. Robertson, Seymour & Thomas (1991).
  9. Fomin, Oum & Thilikos (2010).

Related Research Articles

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

<span class="mw-page-title-main">Clique problem</span> Task of computing complete subgraphs

In computer science, the clique problem is the computational problem of finding cliques in a graph. It has several different formulations depending on which cliques, and what information about the cliques, should be found. Common formulations of the clique problem include finding a maximum clique, finding a maximum weight clique in a weighted graph, listing all maximal cliques, and solving the decision problem of testing whether a graph contains a clique larger than a given size.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Outerplanar graph</span> Non-crossing graph with vertices on outer face

In graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing.

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges.

<span class="mw-page-title-main">Graph coloring</span> Methodic assignment of colors to elements of a graph

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

<span class="mw-page-title-main">Clique (graph theory)</span> Subset of the vertices of a node-link graph that are all adjacent to each other

In the mathematical area of graph theory, a clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph is an induced subgraph of that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied.

In topological graph theory, a mathematical discipline, a linkless embedding of an undirected graph is an embedding of the graph into three-dimensional Euclidean space in such a way that no two cycles of the graph are linked. A flat embedding is an embedding with the property that every cycle is the boundary of a topological disk whose interior is disjoint from the graph. A linklessly embeddable graph is a graph that has a linkless or flat embedding; these graphs form a three-dimensional analogue of the planar graphs. Complementarily, an intrinsically linked graph is a graph that does not have a linkless embedding.

<span class="mw-page-title-main">Paul Seymour (mathematician)</span> British mathematician

Paul D. Seymour is a British mathematician known for his work in discrete mathematics, especially graph theory. He was responsible for important progress on regular matroids and totally unimodular matrices, the four colour theorem, linkless embeddings, graph minors and structure, the perfect graph conjecture, the Hadwiger conjecture, claw-free graphs, χ-boundedness, and the Erdős–Hajnal conjecture. Many of his recent papers are available from his website.

<span class="mw-page-title-main">Hadwiger conjecture (graph theory)</span>

In graph theory, the Hadwiger conjecture states that if is loopless and has no minor then its chromatic number satisfies . It is known to be true for . The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field.

<span class="mw-page-title-main">Wagner's theorem</span> On forbidden minors in planar graphs

In graph theory, Wagner's theorem is a mathematical forbidden graph characterization of planar graphs, named after Klaus Wagner, stating that a finite graph is planar if and only if its minors include neither K5 nor K3,3. This was one of the earliest results in the theory of graph minors and can be seen as a forerunner of the Robertson–Seymour theorem.

In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. The graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly k are called k-trees, and the graphs with treewidth at most k are called partial k-trees. Many other well-studied graph families also have bounded treewidth.

In graph theory, a path decomposition of a graph G is, informally, a representation of G as a "thickened" path graph, and the pathwidth of G is a number that measures how much the path was thickened to form G. More formally, a path-decomposition is a sequence of subsets of vertices of G such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets, and the pathwidth is one less than the size of the largest set in such a decomposition. Pathwidth is also known as interval thickness, vertex separation number, or node searching number.

<span class="mw-page-title-main">Klaus Wagner</span>

Klaus Wagner was a German mathematician known for his contributions to graph theory.

<span class="mw-page-title-main">Clique-sum</span> Gluing graphs at complete subgraphs

In graph theory, a branch of mathematics, a clique-sum is a way of combining two graphs by gluing them together at a clique, analogous to the connected sum operation in topology. If two graphs G and H each contain cliques of equal size, the clique-sum of G and H is formed from their disjoint union by identifying pairs of vertices in these two cliques to form a single shared clique, and then possibly deleting some of the clique edges. A k-clique-sum is a clique-sum in which both cliques have at most k vertices. One may also form clique-sums and k-clique-sums of more than two graphs, by repeated application of the two-graph clique-sum operation.

In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an n-vertex graph can partition the graph into disjoint subgraphs each of which has at most vertices.

<span class="mw-page-title-main">Halin graph</span> Mathematical tree with cycle through leaves

In graph theory, a Halin graph is a type of planar graph, constructed by connecting the leaves of a tree into a cycle. The tree must have at least four vertices, none of which has exactly two neighbors; it should be drawn in the plane so none of its edges cross, and the cycle connects the leaves in their clockwise ordering in this embedding. Thus, the cycle forms the outer face of the Halin graph, with the tree inside it.

In mathematics, the graph structure theorem is a major result in the area of graph theory. The result establishes a deep and fundamental connection between the theory of graph minors and topological embeddings. The theorem is stated in the seventeenth of a series of 23 papers by Neil Robertson and Paul Seymour. Its proof is very long and involved. Kawarabayashi & Mohar (2007) and Lovász (2006) are surveys accessible to nonspecialists, describing the theorem and its consequences.

Bidimensionality theory characterizes a broad range of graph problems (bidimensional) that admit efficient approximate, fixed-parameter or kernel solutions in a broad range of graphs. These graph classes include planar graphs, map graphs, bounded-genus graphs and graphs excluding any fixed minor. In particular, bidimensionality theory builds on the graph minor theory of Robertson and Seymour by extending the mathematical results and building new algorithmic tools. The theory was introduced in the work of Demaine, Fomin, Hajiaghayi, and Thilikos, for which the authors received the Nerode Prize in 2015.

<span class="mw-page-title-main">Apex graph</span> Graph which can be made planar by removing a single node

In graph theory, a branch of mathematics, an apex graph is a graph that can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. It is an apex, not the apex because an apex graph may have more than one apex; for example, in the minimal nonplanar graphs K5 or K3,3, every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove.

References