Hallucishaniids

Last updated

Hallucishaniids
Temporal range: Cambrian Stage 3–Moscovian
O
S
D
C
P
T
J
K
Pg
N
Possibly ancestors of tardigrades.
20210000 Luolishaniids Luolishaniidae Luolishaniida.png
Diagrammatic reconstructions of various luolishaniids
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
(unranked): Panarthropoda
Phylum: "Lobopodia"
Clade: Hallucishaniids
Smith & Caron, 2015
Families

"Hallucishaniids" are a clade of lobopodians uniting the families Hallucigeniidae and Luolishaniidae. [1] The name of this clade is a portmanteau of its two constituent families.

Morphology and description

Diagrammatic reconstructions of various Hallucigenia species 20210000 Hallucigenia diagrammatic reconstruction.png
Diagrammatic reconstructions of various Hallucigenia species

Hallucishaniids have two or three body zones. The first of these contains the eyespot-bearing head and several pairs of feathery appendages likely specialised for filter feeding. The second, larger zone consists of many pairs of clawed limbs used for walking with each pair corresponding to a sclerite, with a third zone present in Ovatiovermis where the feathery appendages continue with far shorter branches, and clawed limbs are reduced to the last few pairs. [2] The limb claws seem to alternate which direction they face. Most hallucishaniids have spine-like sclerites which vary in width and length, however some like Cardiodictyon have more plate-like sclerites, [3] and Ovatiovermis as well as Facivermis lack them entirely. Thanahita is especially bizarre, as while it retains sclerites they are rather randomly distributed along the body and have several tufts near their tips which make them vaguely resemble coral polyps. [4] The sclerites are paired in hallucigeniids, but luolishaniids have three or more per lobopod pair; some, such as Acinocricus and Collinsium , have rings of sclerites in between their lobopods. [5] In addition, luolishaniids often have a circular, flat head sclerite.

Hallucishaniids have just one or two claws per limb, as opposed to the three or more of other lobopodians like Aysheaia . Luolishaniids in particular also have hardened sheets within their bodies, likely to support the larger, broader spines they often bear. This feature is particularly prominent in Entothyreos , which has large shield-like sheets alongside a partly arthrodised last pair of limbs. [6] Arguably the most derived hallucishaniid of all is Facivermis, which entirely lacks limbs except for its filtering appendages, with a pear-shaped posterior body end. In addition, it seemingly lived in tubes much like some modern polychaetes. [7]

Hallucishaniids are among the longest-lasting lobopodians, with fossils extending from the Cambrian to the Carboniferous. [8] In addition, the luolishaniids (and specifically Ovatiovermis) are likely ancestral to tardigrades. [9]

Related Research Articles

<span class="mw-page-title-main">Lobopodia</span> Group of extinct worm-like animals with legs

Lobopodians are members of the informal group Lobopodia, or the formally erected phylum Lobopoda Cavalier-Smith (1998). They are panarthropods with stubby legs called lobopods, a term which may also be used as a common name of this group as well. While the definition of lobopodians may differ between literatures, it usually refers to a group of soft-bodied, marine worm-like fossil panarthropods such as Aysheaia and Hallucigenia. However, other genera like Kerygmachela and Pambdelurion are often referred to as “gilled lobopodians”.

<i>Hallucigenia</i> Genus of Cambrian animals

Hallucigenia is a genus of lobopodian known from Cambrian aged fossils in Burgess Shale-type deposits in Canada and China, and from isolated spines around the world. The generic name reflects the type species' unusual appearance and eccentric history of study; when it was erected as a genus, H. sparsa was reconstructed as an enigmatic animal upside down and back to front. Lobopodians are a grade of Paleozoic panarthropods from which the velvet worms, water bears, and arthropods arose.

<i>Opabinia</i> Extinct stem-arthropod species found in Cambrian fossil deposits

Opabinia regalis is an extinct, stem group arthropod found in the Middle Cambrian Burgess Shale Lagerstätte of British Columbia. Opabinia was a soft-bodied animal, measuring up to 7 cm in body length, and had a segmented trunk with flaps along its sides and a fan-shaped tail. The head showed unusual features: five eyes, a mouth under the head and facing backwards, and a clawed proboscis that most likely passed food to its mouth. Opabinia lived on the seafloor, using the proboscis to seek out small, soft food. Fewer than twenty good specimens have been described; 3 specimens of Opabinia are known from the Greater Phyllopod bed, where they constitute less than 0.1% of the community.

<span class="mw-page-title-main">Dinocaridida</span> Extinct class of basal arthropods

Dinocaridida is a proposed fossil taxon of basal arthropods, which flourished during the Cambrian period and survived up to Early Devonian. Characterized by a pair of frontal appendages and series of body flaps, the name of Dinocaridids refers to the suggested role of some of these members as the largest marine predators of their time. Dinocaridids are occasionally referred to as the 'AOPK group' by some literatures, as the group composed of Radiodonta, Opabiniidae, and the "gilled lobopodians" Pambdelurion and Kerygmachelidae. It is most likely paraphyletic, with Kerygmachelidae and Pambdelurion more basal than the clade compose of Opabiniidae, Radiodonta and other arthropods.

<i>Pambdelurion</i> Extinct genus of Arthropod

Pambdelurion is an extinct genus of panarthropod from the Cambrian aged Sirius Passet site in northern Greenland. Like the morphologically similar Kerygmachela from the same locality, Pambdelurion is thought to be closely related to arthropods, combining characteristics of "lobopodians" with those of primitive arthropods.

<i>Parapeytoia</i> Extinct genus of arthropods

Parapeytoia is a genus of Cambrian arthropod. The type and only described species is Parapeytoia yunnanensis, lived over 518 million years ago in the Maotianshan shales of Yunnan, China. Unidentified fossils from the same genus also had been discovered from the nearby Wulongqing Formation.

<span class="mw-page-title-main">Radiodonta</span> Extinct order of basal arthropods

Radiodonta is an extinct order of stem-group arthropods that was successful worldwide during the Cambrian period. Radiodonts are distinguished by their distinctive frontal appendages, which are morphologically diverse and were used for a variety of functions. Radiodonts were among the earliest large predators, but they also included sediment sifters and filter feeders. Some of the most famous species of radiodonts are the Cambrian taxa Anomalocaris canadensis, Hurdia victoria, Peytoia nathorsti, Titanokorys gainesi, Cambroraster falcatus and Amplectobelua symbrachiata. The later surviving members include the subfamily Aegirocassisinae from the Early Ordovician of Morocco and the Early Devonian member Schinderhannes bartelsi from Germany.

<i>Cucumericrus</i> Extinct genus of arthropod

Cucumericrus ("cucumber-leg") is an extinct genus of stem-arthropod. The type and only species is Cucumericrus decoratus, with fossils discovered from the Maotianshan Shales of Yunnan, China.

<i>Diania</i> Extinct genus of Cambrian animals

Diania is an extinct genus of lobopodian panarthropod found in the Lower Cambrian Maotianshan shale of China, represented by a single species - D. cactiformis. Known during its investigation by the nickname "walking cactus", this organism belongs to a group known as the armoured lobopodians, and has a simple worm-like body with robust, spiny legs. Initially, the legs were thought to have a jointed exoskeleton and Diania was suggested to be evolutionarily close to early arthropods, but many later studies have rejected this interpretation.

<span class="mw-page-title-main">Luolishaniidae</span> Extinct family of worm-like animals

The Luolishaniidae or Luolishaniida are a group of Cambrian and Ordovician lobopodians with anterior 5 or 6 pairs of setiferous lobopods. Most luolishaniids also have posterior lobopods each with a hooked claws, and thorn-shaped sclerites arranged as three or more per trunk segment. The type genus is based on Luolishania longicruris Hou and Chen, 1989, from the Chengjiang Lagerstatte, South China. They are presumed to have been benthic suspension or filter feeders.

<i>Ovatiovermis</i> Extinct genus of tardigrades

Ovatiovermis is a genus of filter-feeding lobopodian known from the Burgess Shale. Like many lobopodians, it had nine pairs of lobopods (legs). It was well adapted to filter-feeding and probably did so from the nearest high vantage point.

<i>Onychodictyon</i> Extinct genus of worms

Onychodictyon is a genus of extinct lobopodian known from the Lower Cambrian Chengjiang Maotianshan Shales in the Yunnan Province in China. It was characterized by a stout body covered by fleshy papillae and pairs of sclerotized plates with spines, representing part of the diverse "armoured lobopodians" alongside similar forms such as Microdictyon and Hallucigenia.

<i>Collinsovermis</i> Extinct genus of lobopodians

Collinsovermis is a genus of extinct panarthropod belonging to the group Lobopodia and known from the middle Cambrian Burgess Shale in British Columbia, Canada. It is monotypic having only one species, Collinsovermis monstruosus. After its initial discovery in 1983, Desmond H. Collins popularised it as a unique animal and was subsequently dubbed "Collins' monster" for its unusual super armoured body. The formal scientific description and name were given in 2020. A similar lobopodian is known from the Emu Bay Shale, however it remains unnamed.

<i>Acinocricus</i> Extinct genus of lobopodians

Acinocricus is a genus of extinct panarthropod belonging to the group Lobopodia and known from the middle Cambrian Spence Shale of Utah, United States. As a monotypic genus, it has one species Acinocricus stichus. The only lobopodian discovered from the Spence Shale, it was described by Simon Conway Morris and Richard A. Robison in 1988. Owing to the original fragmentary fossils discovered since 1982, it was initially classified as an alga, but later realised to be an animal belonging to Cambrian fauna.

Luolishania is an extinct genus of lobopodian panarthropod and known from the Lower Cambrian Chiungchussu Formation of the Chengjiang County, Yunnan Province, China. A monotypic genus, it contains one species Luolishania longicruris. It was discovered and described by Hou Xian-Guang and Chen Jun-Yuan in 1989. It is one of the superarmoured Cambrian lobopodians suspected to be either an intermediate form in the origin of velvet worms (Onychophora) or basal to at least Tardigrada and Arthropoda. It is the basis of the family name Luolishaniidae, which also include other related lobopods such as Acinocricus, Collinsium, Facivermis, and Ovatiovermis. Along with Microdictyon, it is the first lobopodian fossil discovered from China.

<i>Thanahita</i> Extinct genus of Lobopodian

Thanahita is a genus of extinct lobopodian and known from the middle Silurian Herefordshire Lagerstätte at the England–Wales border in UK. It is monotypic and contains one species, Thanahita distos. Discovered in 2018, it is estimated to have lived around 430 million years ago and is the first Silurian lobopodian known worldwide.

<span class="mw-page-title-main">Hallucigeniidae</span> Extinct family of lobopodian worms

Hallucigeniidae is a family of extinct worms belonging to the group Lobopodia that originated during the Cambrian explosion. It is based on the species Hallucigenia sparsa, the fossil of which was discovered by Charles Doolittle Walcott in 1911 from the Burgess Shale of British Columbia. The name Hallucigenia was created by Simon Conway Morris in 1977, from which the family was erected after discoveries of other hallucigeniid worms from other parts of the world. Classification of these lobopods and their relatives are still controversial, and the family consists of at least four genera.

Carbotubulus is a genus of extinct worm belonging to the group Lobopodia and known from the Carboniferous Carbondale Formation of the Mazon Creek area in Illinois, US. A monotypic genus, it contains one species Carbotubulus waloszeki. It was discovered and described by Joachim T. Haug, Georg Mayer, Carolin Haug, and Derek E.G. Briggs in 2012. With an age of about 300 million years, it is the first long-legged lobopodian discovered after the period of Cambrian explosion.

<i>Lenisambulatrix</i> Extinct genus of Lobopodian

Lenisambulatrix is a genus of extinct worm belonging to the group Lobopodia and known from the Lower Cambrian Maotianshan shale of China. It is represented by a single species L. humboldti. The incomplete fossil was discovered and described by Qiang Ou and Georg Mayer in 2018. Due to its missing parts, its relationship with other lobopodians is not clear. It shares many structural features with another Cambrian lobopodian Diania cactiformis, a fossil of which was found alongside it.

<i>Entothyreos</i> Extinct genus of lobopodians

Entothyreos is a genus of extinct panarthropod belonging to the group Lobopodia and known from the middle Cambrian Burgess Shale in British Columbia, Canada. The genus contains a single species, Entothyreos synnaustrus, described in 2024. Entothyreos is significant for possessing a remarkable degree of sclerotization among lobopodians, comparable to that of arthropods.

References

  1. Smith, Martin R.; Caron, Jean-Bernard (July 2015). "Hallucigenia's head and the pharyngeal armature of early ecdysozoans". Nature. 523 (7558): 75–78. Bibcode:2015Natur.523...75S. doi:10.1038/nature14573. PMID   26106857.
  2. Caron, Jean-Bernard; Aria, Cédric (December 2017). "Cambrian suspension-feeding lobopodians and the early radiation of panarthropods". BMC Evolutionary Biology. 17 (1): 29. Bibcode:2017BMCEE..17...29C. doi: 10.1186/s12862-016-0858-y . PMID   28137244.
  3. Strausfeld, Nicholas J.; Hou, Xianguang; Sayre, Marcel E.; Hirth, Frank (25 November 2022). "The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains". Science. 378 (6622): 905–909. Bibcode:2022Sci...378..905S. doi:10.1126/science.abn6264. PMID   36423269.
  4. Siveter, Derek J.; Briggs, Derek E. G.; Siveter, David J.; Sutton, Mark D.; Legg, David (August 2018). "A three-dimensionally preserved lobopodian from the Herefordshire (Silurian) Lagerstätte, UK". Royal Society Open Science. 5 (8): 172101. doi:10.1098/rsos.172101. PMC   6124121 . PMID   30224988.
  5. Yang, Jie; Ortega-Hernández, Javier; Gerber, Sylvain; Butterfield, Nicholas J.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang (14 July 2015). "A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora". Proceedings of the National Academy of Sciences. 112 (28): 8678–8683. Bibcode:2015PNAS..112.8678Y. doi: 10.1073/pnas.1505596112 . PMID   26124122.
  6. Aria, Cédric; Caron, Jean-Bernard (31 December 2024). "Deep origin of articulation strategies in panarthropods: evidence from a new luolishaniid lobopodian (Panarthropoda) from the Tulip Beds, Burgess Shale". Journal of Systematic Palaeontology. 22 (1). Bibcode:2024JSPal..2256090A. doi:10.1080/14772019.2024.2356090.
  7. Howard, Richard J.; Hou, Xianguang; Edgecombe, Gregory D.; Salge, Tobias; Shi, Xiaomei; Ma, Xiaoya (April 2020). "A Tube-Dwelling Early Cambrian Lobopodian". Current Biology. 30 (8): 1529–1536.e2. Bibcode:2020CBio...30E1529H. doi:10.1016/j.cub.2020.01.075. PMID   32109391.
  8. Haug, Joachim T.; Mayer, Georg; Haug, Carolin; Briggs, Derek E.G. (September 2012). "A Carboniferous Non-Onychophoran Lobopodian Reveals Long-Term Survival of a Cambrian Morphotype". Current Biology. 22 (18): 1673–1675. Bibcode:2012CBio...22.1673H. doi:10.1016/j.cub.2012.06.066.
  9. Kihm, Ji-Hoon; Smith, Frank W.; Kim, Sanghee; Rho, Hyun Soo; Zhang, Xingliang; Liu, Jianni; Park, Tae-Yoon S. (11 July 2023). "Cambrian lobopodians shed light on the origin of the tardigrade body plan". Proceedings of the National Academy of Sciences. 120 (28): e2211251120. Bibcode:2023PNAS..12011251K. doi: 10.1073/pnas.2211251120 . PMC   10334802 . PMID   37399417.