Haloferax mediterranei

Last updated

Haloferax mediterranei
Haloferax mediterranei SEM.png
SEM image of Haloferax mediterranei.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Archaea
Kingdom: Methanobacteriati
Phylum: Methanobacteriota
Class: Halobacteria
Order: Haloferacales
Family: Haloferacaceae
Genus: Haloferax
Species:
H. mediterranei
Binomial name
Haloferax mediterranei
(Rodriguez-Valera et al. 1983) Torreblanca et al. 1987 [1]
Synonyms
  • Halobacterium mediterraneiRodriguez-Valera et al. 1983 [1]

Haloferax mediterranei is a species of archaea in the family Haloferacaceae. [1]

Contents

Discovery

Haloferax mediterranei was discovered in 1983 in marine salterns in the village of Santa Pola, Spain. [2] The species was initially named Halobacterium mediterranei, then renamed Haloferax mediterranei in 1986. [3] Haloferax mediterranei is the fastest-growing known member of the Halobacteriales under optimal laboratory conditions, but it is relatively rare in the environment. [4] The full genome of H. mediterranei was sequenced in 2012. [5]

Metabolism and Growth Conditions

Haloferax mediterranei is the fastest-growing archaeon in the Halobacteriales family, [4] with generation times as low as 1.2 hours reported under optimal laboratory growth conditions. [6] Haloferax mediterranei is able to use a variety of compounds as carbon and energy sources, [7] and can accumulate materials to serve as a source of carbon and energy, as well as use organic and inorganic nitrogen sources. [4] H. mediterranei is an extremely versatile microorganism that can anaerobically or aerobically, tolerate a wide range of salinities (between 10% and 32.5%), a wide range of pH values (between 5.75 and 8.75) and a wide range of temperatures (between 18 and 55 °C). [7] [6] [4] It can also tolerate a variety of high metal concentrations, such as nickel, lithium, cobalt and arsenic, which are toxic to most organisms. [6]

Morphology and Cell Division

Haloferax mediterranei is an extremely pleomorphic organism, cells are usually flat disks. [4] Like Haloferax volcanii , it performs cell division through the formation of an FtsZ ring. [8]

Biofilm and Exopolysaccharide formation

Haloferax mediterranei produces a mucous exopolysaccharide matrix that accumulates as a top layer in liquid medium. [9] This is a widespread strategy in the microbial world that helps biofilms adhere to surfaces, as well as protects cells from pH and temperature variations and radiation. [10] These exopolysaccharides have been studied as potential emulsifiers for industry. [9] The unshaken biofilms of H. mediterranei in liquid cultures rapidly rearrange into a honeycomb formation pattern upon exposure to air, a phenomenon that has yet to be fully elucidated. [11]

PHA and PHB synthesis

H. mediterranei, when grown under phosphate limitation, [12] produces polyhydroxyalkanoates, a type of biodegradable thermoplastic currently commercially produced using bacteria. [13] It has been suggested that H. mediterranei is a good candidate for industrial production of biodegradable thermoplastics due to its fast growth, low contamination rates and ease of lysis. [14] Deleting the genes responsible for exopolysaccharide synthesis results in a 20% increase in the amount of PHAs in the cell. [13] Increasing the salt concentration of the media also increased the concentration of PHAs produced. [15]

Gas Vesicles

Like some other members of the Halobacteriales group, notably Halobacterium salinarum , Haloferax mediterranei produces gas vesicles, believed to act aiding buoyancy. The production of gas vesicles only occurs in high salt concentrations and once cells have reached stationary phase. [4] By transforming 14 genes from the vac cluster of H. mediterranei into a gas-vesicle deficient archaeon H. volcanii , researchers found that H. volcanii is able to produce functional gas vacuoles. [16] [17]

References

  1. 1 2 3 Page Species: Haloferax mediterranei on "LPSN - List of Prokaryotic names with Standing in Nomenclature". Deutsche Sammlung von Mikroorganismen und Zellkulturen . Retrieved 2022-07-15.
  2. Mojica, Francisco J. M.; Rodriguez-Valera, Francisco (2016-06-15). "The discovery of CRISPR in archaea and bacteria". The FEBS Journal. 283 (17). Wiley: 3162–3169. doi:10.1111/febs.13766. hdl: 10045/57676 . ISSN   1742-464X. PMID   27234458. S2CID   42827598.
  3. Torreblanca, Marina; Rodriguez-Valera, F.; Juez, Guadalupe; Ventosa, Antonio; Kamekura, Masahiro; Kates, Morris (1986). "Classification of Non-alkaliphilic Halobacteria Based on Numerical Taxonomy and Polar Lipid Composition, and Description of Haloarcula gen. nov. and Haloferax gen. nov". Systematic and Applied Microbiology. 8 (1–2). Elsevier BV: 89–99. doi:10.1016/s0723-2020(86)80155-2. ISSN   0723-2020.
  4. 1 2 3 4 5 6 Oren, Aharon; Hallsworth, John E. (2014-08-28). "Microbial weeds in hypersaline habitats: the enigma of the weed-like Haloferax mediterranei". FEMS Microbiology Letters. 359 (2). Oxford University Press (OUP): 134–142. doi: 10.1111/1574-6968.12571 . ISSN   0378-1097. PMID   25132231. S2CID   5047263.
  5. Han, Jing; Zhang, Fan; Hou, Jing; Liu, Xiaoqing; Li, Ming; Liu, Hailong; Cai, Lei; Zhang, Bing; Chen, Yaping; Zhou, Jian; Hu, Songnian; Xiang, Hua (2012-08-15). "Complete Genome Sequence of the Metabolically Versatile Halophilic Archaeon Haloferax mediterranei, a Poly(3-Hydroxybutyrate- co -3-Hydroxyvalerate) Producer". Journal of Bacteriology. 194 (16). American Society for Microbiology: 4463–4464. doi:10.1128/jb.00880-12. ISSN   0021-9193. PMC   3416209 . PMID   22843593.
  6. 1 2 3 Matarredona, Laura; Camacho, Mónica; Zafrilla, Basilio; Bravo-Barrales, Gloria; Esclapez, Julia; Bonete, María-José (2021-02-08). "The Survival of Haloferax mediterranei under Stressful Conditions". Microorganisms. 9 (2). MDPI AG: 336. doi: 10.3390/microorganisms9020336 . ISSN   2076-2607. PMC   7915512 . PMID   33567751.
  7. 1 2 Trujillo, Martha E; Dedysh, Svetlana; Devos, Paul; Hedlund, Brian; Kämpfer, Peter; Rainey, Fred A; Whitman, William B, eds. (2015-04-17). Bergey's Manual of Systematics of Archaea and Bacteria. Wiley. doi:10.1002/9781118960608. ISBN   978-1-118-96060-8.
  8. Poplawski, Andrzej; Gullbrand, Björn; Bernander, Rolf (2000). "The ftsZ gene of Haloferax mediterranei: sequence, conserved gene order, and visualization of the FtsZ ring". Gene. 242 (1–2). Elsevier BV: 357–367. doi:10.1016/s0378-1119(99)00517-x. ISSN   0378-1119. PMID   10721730.
  9. 1 2 Antón, Josefa; Meseguer, Inmaculada; Rodríguez-Valera, F. (1988). "Production of an Extracellular Polysaccharide by Haloferax mediterranei". Applied and Environmental Microbiology. 54 (10). American Society for Microbiology: 2381–2386. doi:10.1128/aem.54.10.2381-2386.1988. ISSN   0099-2240. PMC   204266 . PMID   16347749.
  10. Poli, Annarita; Di Donato, Paola; Abbamondi, Gennaro Roberto; Nicolaus, Barbara (2011). "Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea". Archaea. 2011. Hindawi Limited: 1–13. doi: 10.1155/2011/693253 . ISSN   1472-3646. PMC   3191746 . PMID   22007151.
  11. Schiller, Heather; Schulze, Stefan; Mutan, Zuha; de Vaulx, Charlotte; Runcie, Catalina; Schwartz, Jessica; Rados, Theopi; Bisson Filho, Alexandre W.; Pohlschroder, Mechthild (2020-12-23). "Haloferax volcanii Immersed Liquid Biofilms Develop Independently of Known Biofilm Machineries and Exhibit Rapid Honeycomb Pattern Formation". mSphere. 5 (6). American Society for Microbiology. doi:10.1128/msphere.00976-20. ISSN   2379-5042. PMC   7771232 . PMID   33328348.
  12. Rodriguez-Valera, F.; Lillo, J. A. Garcia; Antón, Josefa; Meseguer, Inmaculada (1991). "Biopolymer Production by Haloferax Mediterranei". General and Applied Aspects of Halophilic Microorganisms. Boston, MA: Springer US. pp. 373–380. doi:10.1007/978-1-4615-3730-4_45. ISBN   978-1-4613-6660-7.
  13. 1 2 Zhao, Dahe; Cai, Lei; Wu, Jinhua; Li, Ming; Liu, Hailong; Han, Jing; Zhou, Jian; Xiang, Hua (2012-09-27). "Improving polyhydroxyalkanoate production by knocking out the genes involved in exopolysaccharide biosynthesis in Haloferax mediterranei". Applied Microbiology and Biotechnology. 97 (7). Springer Science and Business Media LLC: 3027–3036. doi:10.1007/s00253-012-4415-3. ISSN   0175-7598. PMID   23015099. S2CID   253771071.
  14. Bhattacharyya, Anirban; Pramanik, Arnab; Maji, Sudipta Kumar; Haldar, Saubhik; Mukhopadhyay, Ujjal Kumar; Mukherjee, Joydeep (2012-07-09). "Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei". AMB Express. 2 (1). Springer Science and Business Media LLC: 34. doi: 10.1186/2191-0855-2-34 . ISSN   2191-0855. PMC   3507687 . PMID   22776040.
  15. Cui, You-Wei; Gong, Xiao-Yu; Shi, Yun-Peng; Wang, Zhiwu (Drew) (2017). "Salinity effect on production of PHA and EPS byHaloferax mediterranei". RSC Advances. 7 (84). Royal Society of Chemistry (RSC): 53587–53595. doi: 10.1039/c7ra09652f . ISSN   2046-2069. S2CID   90828798.
  16. Offner, Sonja; Ziese, Ulrike; Wanner, Gerhard; Typke, Dieter; Pfeifer, Felicitas (1998-05-01). "Structural characteristics of halobacterial gas vesicles". Microbiology. 144 (5). Microbiology Society: 1331–1342. doi: 10.1099/00221287-144-5-1331 . ISSN   1350-0872. PMID   9611808.
  17. Beard, Steven J.; Hayes, Paul K.; Pfeifer, Felicitas; Walsby, Anthony E. (2002). "The sequence of the major gas vesicle protein, GvpA, influences the width and strength of halobacterial gas vesicles". FEMS Microbiology Letters. 213 (2). Oxford University Press (OUP): 149–157. doi: 10.1111/j.1574-6968.2002.tb11299.x . ISSN   0378-1097. PMID   12167531. S2CID   19696507.