Hematopoietic stem cell mobilization

Last updated

Hematopoietic stem cell (HSC) mobilization is the medical process of stimulating hematopoietic stem cells to move (or "mobilize") from their native microenvironment ("niche") in the bone marrow into the peripheral bloodstream. Once circulating in sufficient numbers, these cells can be collected via a procedure called leukapheresis and used for hematopoietic stem cell transplantation (HSCT).

Contents

This pharmacological approach has largely supplanted the surgical harvesting of bone marrow as the primary method for obtaining stem cells for both autologous and allogeneic transplantation due to its lower invasiveness and often higher cell yields. [1] The success of mobilization hinges on therapeutically disrupting the molecular interactions that anchor HSCs within the bone marrow niche.

Background

Under normal physiological conditions, HSCs reside in a specialized, supportive microenvironment within the bone marrow known as the HSC niche. This niche maintains the long-term viability, quiescence, and self-renewal capacity of the stem cell pool. The retention of HSCs within this niche is an active process mediated by a complex network of cellular and molecular interactions, often described as "molecular tethers". [2] The two most critical retention axes are the CXCR-4/CXCL-12 and VLA-4/VCAM-1 axis.

CXCR-4/CXCL-12 axis (CXR-4/SDF-1 axis)

The CXCR-4/CXCL-12 axis is a polyfunctional signaling cascade associated with multiple cellular processes such as proliferation, migration, and stress resistance. [3] CXCR-4 (C-X-C chemokine receptor type 4), also known as fusin or CD184, is a seven-transmembrane G-protein coupled receptor (GPCR) located on the surface of HSCs and various other cell types. CXCL-12 (C-X-C motif chemokine 12), also known by SDF-1 (Stromal Cell-Derived Factor-1) is a chemokine protein ubiquitously expressed in many tissues and cell types. The primary retention signal is orchestrated by CXCR4, expressed on the HSC surface, and CXCL12, which is secreted at high concentrations by niche stromal cells like CXCL12-abundant reticular (CAR) cells and osteoblasts. [4] This creates a powerful chemoattractant gradient that not only guides HSC homing but also actively retains them within this microenvironment. [2] Upon binding, the CXCL12/CXCR4 interaction initiates a Gαi-mediated intracellular cascade that suppresses cyclic AMP (cAMP) levels to promote HSC quiescence, while simultaneously activating pathways like PI3K/Akt/mTOR and pERK/MAPK. [5] [6]

VLA-4/VCAM-1 axis

Working in concert is the physical anchor provided by the VLA-4/VCAM-1 axis. The heterodimeric integrin VLA-4 (α4β1) is expressed on HSCs, while its ligand, VCAM-1 (Vascular Cell Adhesion Molecule-1), is present on stromal and endothelial cells. [7] [8] VLA-4 exists in a default low-affinity state until activation. The intracellular signals emanating from CXCL12 engagement with CXCR4 trigger a process known as "inside-out signaling," which induces a conformational change in VLA-4, shifting it to a high-affinity state capable of binding VCAM-1 tightly. [9] [10] [11] [12] This creates a robust physical tether, anchoring the HSC to the niche architecture, and ensures stable HSC engraftment and quiescence. Other supporting interactions, such as the binding of Stem Cell Factor (SCF) to its receptor c-Kit on HSCs, also contribute to retention and survival. [13] [14] Consequently, the therapeutic disruption of these axes—for instance, by protease-mediated cleavage of both CXCL-12 and VCAM-1 following G-CSF administration—forms the fundamental basis of all modern HSC mobilization strategies. [15]

Mechanisms of pharmacological mobilization

Granulocyte colony-stimulating factor (G-CSF)

Granulocyte colony-stimulating factor (G-CSF), in forms like filgrastim and lenograstim, is the most common mobilizing agent. G-CSF activates and induces the production of mature neutrophils, promotes the proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs), and facilitates the release of HSPCs from the bone marrow. Donors are given a course of GCSF prior to stem cell collection. Peak peripheral HSC concentration typically occurs 4–6 days after initiating daily G-CSF injections. [16] G-CSF is also administered prophylactically to prevent neutropenia in patients undergoing chemotherapy. [17]

The exact mechanism by which G-CSF acts to mobilize HSPCs remains unclear, with some studies showing a direct stimulation of stem cells and others suggesting that myeloid cells are required. [18] Neutrophils play a pivotal role in G-CSF-induced HSPC mobilization, as depletion of neutrophils using antibodies against Gr1 significantly reduces HSPC mobilization by G-CSF. [19] Mature neutrophils secrete matrix metalloproteinases (MMPs) into the bone marrow, thereby creating a proteolytic environment which disrupts HSPC retention signaling molecules, such as CXCL12/CXCR4 or VCAM1, in the bone marrow niche and releases HSPCs. [19] [20] [21] [22] [23] However, studies in mice lacking neutrophil proteases have shown that HSPC mobilization can still occur in the absence of MMPs, indicating that MMPs may not be strictly required. [24] The significance of neutrophils in HSPC mobilization was later called into question by a study demonstrating that transgenic mice expressing G-CSF receptors exclusively in the monocytic lineage - but not in neutrophils - were still capable of effective HSPC mobilization. [25] Endosteal macrophages, in particular, are known to regulate osteoblast function, thereby maintaining the integrity of the bone marrow microenvironment. While macrophage depletion appears to enhance HSPC mobilization, other studies have shown that macrophage activation and expansion can also promote LECT2-dependent HSC mobilization, indicating more complex mechanisms. [26] [18]

CXCR4 antagonists (Plerixafor)

Plerixafor (AMD3100) is an immunostimulant used to mobilize hematopoietic stem cells. Plerixafor acts as an antagonist (or perhaps more accurately a partial agonist) of CXCR4 and an allosteric agonist of CXCR7. [27] Its effect is much faster than G-CSF, with peripheral HSC counts peaking approximately 10–14 hours after a single subcutaneous injection. [28] [29]

Chemotherapy-Based Mobilization

In the autologous transplant setting (e.g., for multiple myeloma or lymphoma), myelosuppressive chemotherapy (e.g., high-dose cyclophosphamide) can be used as a mobilizing agent, often supplemented with G-CSF. [30]

Collection

The success of mobilization is tracked by measuring the concentration of HSCs in the peripheral blood. This is achieved via flow cytometry to quantify CD34+ cells. CD34 is a surface glycoprotein expressed on HSCs and early progenitor cells, serving as the universal clinical marker. [31] A peripheral blood CD34+ count exceeding a certain threshold typically indicates readiness for collection. [30]

References

  1. To, L. B.; Haylock, D. N.; Simmons, P. J.; Juttner, C. A. (1997-04-01). "The Biology and Clinical Uses of Blood Stem Cells". Blood. 89 (7): 2233–2258. doi:10.1182/blood.V89.7.2233. ISSN   0006-4971. PMID   9116266.
  2. 1 2 Méndez-Ferrer, Simón; Michurina, Tatyana V.; Ferraro, Francesca; Mazloom, Amin R.; Macarthur, Ben D.; Lira, Sergio A.; Scadden, David T.; Ma'ayan, Avi; Enikolopov, Grigori N.; Frenette, Paul S. (2010-08-12). "Mesenchymal and haematopoietic stem cells form a unique bone marrow niche". Nature. 466 (7308): 829–834. Bibcode:2010Natur.466..829M. doi:10.1038/nature09262. ISSN   1476-4687. PMC   3146551 . PMID   20703299.
  3. Britton, C.; Poznansky, M. C.; Reeves, P. (2021). "Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases". The FASEB Journal. 35 (4): e21260. doi: 10.1096/fj.202001273R . PMID   33715207.
  4. Aoki, Kazunari; Kurashige, Masako; Ichii, Michiko; Higaki, Kei; Sugiyama, Tatsuki; Kaito, Takashi; Ando, Wataru; Sugano, Nobuhiko; Sakai, Takashi; Shibayama, Hirohiko; HANDAI Clinical Blood Club; Takaori-Kondo, Akifumi; Morii, Eiichi; Kanakura, Yuzuru; Nagasawa, Takashi (2021-05-01). "Identification of CXCL12-abundant reticular cells in human adult bone marrow". British Journal of Haematology. 193 (3): 659–668. doi:10.1111/bjh.17396. ISSN   1365-2141. PMC   8252541 . PMID   33837967.
  5. Broxmeyer, Hal E.; Orschell, Christie M.; Clapp, D. Wade; Hangoc, Giao; Cooper, Scott; Plett, P. Artur; Liles, W. Conrad; Li, Xiaxin; Graham-Evans, Barbara; Campbell, Timothy B.; Calandra, Gary; Bridger, Gary; Dale, David C.; Srour, Edward F. (2005-04-18). "Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist". The Journal of Experimental Medicine. 201 (8): 1307–1318. doi:10.1084/jem.20041385. ISSN   0022-1007. PMC   2213145 . PMID   15837815.
  6. Ngo, Hai T.; Leleu, Xavier; Lee, Jack; Jia, Xiaoying; Melhem, Molly; Runnels, Judith; Moreau, Anne-Sophie; Burwick, Nicholas; Azab, Abdel Kareem; Roccaro, Aldo; Azab, Feda; Sacco, Antonio; Farag, Mena; Sackstein, Robert; Ghobrial, Irene M. (2008-07-01). "SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia". Blood. 112 (1): 150–158. doi:10.1182/blood-2007-12-129395. ISSN   0006-4971. PMC   2435685 . PMID   18448868.
  7. Yang, Ginger X.; Hagmann, William K. (2003). "VLA-4 antagonists: Potent inhibitors of lymphocyte migration" . Medicinal Research Reviews. 23 (3): 369–392. doi:10.1002/med.10044. ISSN   1098-1128. PMID   12647315.
  8. "VCAM1 vascular cell adhesion molecule 1 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2025-07-13.
  9. Shen, Wei; Bendall, Linda J.; Gottlieb, David J.; Bradstock, Kenneth F. (2001-12-01). "The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow". Experimental Hematology. 29 (12): 1439–1447. doi:10.1016/S0301-472X(01)00741-X. ISSN   0301-472X. PMID   11750103.
  10. Peled, A.; Kollet, O.; Ponomaryov, T.; Petit, I.; Franitza, S.; Grabovsky, V.; Slav, M. M.; Nagler, A.; Lider, O.; Alon, R.; Zipori, D.; Lapidot, T. (2000-06-01). "The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice". Blood. 95 (11): 3289–3296. doi:10.1182/blood.V95.11.3289. ISSN   0006-4971. PMID   10828007.
  11. Petty, Joseph M; Lenox, Christopher C; Weiss, Daniel J; Poynter, Matthew E; Suratt, Benjamin T (2009-01-01). "Crosstalk between CXCR4/Stromal Derived Factor-1 and VLA-4/VCAM-1 Pathways Regulates Neutrophil Retention in the Bone Marrow1". The Journal of Immunology. 182 (1): 604–612. doi:10.4049/jimmunol.182.1.604. ISSN   0022-1767. PMC   2633729 . PMID   19109194.
  12. Silberstein, Leslie E.; Dykxhoorn, Derek; Le, Yi; Honczarenko, Marek; Lieberman, Judy; Glodek, Aleksandra (2006-11-16). "Focal Adhesion Kinase (FAK) Is Required for CXCL12-Induced Dhemotaxis and Adhesion to VCAM-1 in B Lymphocytes and Hematopoietic Stem/Progenitor Cells" . Blood. 108 (11): 1325. doi:10.1182/blood.V108.11.1325.1325. ISSN   0006-4971.
  13. Driessen, Rebecca L.; Johnston, Hayley M.; Nilsson, Susan K. (2003-12-01). "Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region". Experimental Hematology. 31 (12): 1284–1291. doi: 10.1016/j.exphem.2003.08.015 . ISSN   0301-472X. PMID   14662336.
  14. Chen, Chia-Ling; Faltusova, Katerina; Molik, Martin; Savvulidi, Filipp; Chang, Ko-Tung; Necas, Emanuel (2016-07-01). "Low c-Kit Expression Level Induced by Stem Cell Factor Does Not Compromise Transplantation of Hematopoietic Stem Cells". Biology of Blood and Marrow Transplantation. 22 (7): 1167–1172. doi: 10.1016/j.bbmt.2016.03.017 . ISSN   1083-8791. PMID   27040393.
  15. Lévesque, Jean-Pierre; Hendy, Jean; Takamatsu, Yasushi; Simmons, Paul J.; Bendall, Linda J. (2003-01-15). "Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide". Journal of Clinical Investigation. 111 (2): 187–196. doi:10.1172/JCI15994. ISSN   0021-9738. PMC   151860 . PMID   12531874.
  16. Hölig, Kristina (2013). "G-CSF in Healthy Allogeneic Stem Cell Donors". Transfusion Medicine and Hemotherapy. 40 (4): 225–235. doi:10.1159/000354196. ISSN   1660-3796. PMC   3776391 . PMID   24179471.
  17. Rehlinghaus, Marc; Rehker, Philipp; Che, Yue; Grunewald, Camilla Marisa; Niegisch, Günter (2024-02-01). "Neutropenie – wann ist eine GCSF Unterstützung notwendig?" . Aktuelle Urologie (in German). 55 (1): 38–43. doi:10.1055/a-2128-4965. ISSN   0001-7868. PMID   37607583.
  18. 1 2 Kim, Ji Wook; Fedorov, Evan A.; Zon, Leonard I. (2024-03-01). "G-CSF–induced hematopoietic stem cell mobilization from the embryonic hematopoietic niche does not require neutrophils and macrophages". Experimental Hematology. 131 104147. doi:10.1016/j.exphem.2023.104147. ISSN   0301-472X. PMC   10939783 . PMID   38160994.
  19. 1 2 Pelus, Louis M.; Bian, Huimin; King, Andrew G.; Fukuda, Seiji (2004-01-01). "Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT /CXCL2Δ4". Blood. 103 (1): 110–119. doi:10.1182/blood-2003-04-1115. ISSN   0006-4971. PMID   12958067.
  20. Lévesque, Jean-Pierre; Hendy, Jean; Takamatsu, Yasushi; Williams, Brenda; Winkler, Ingrid G; Simmons, Paul J (2002-05-01). "Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment" . Experimental Hematology. 30 (5): 440–449. doi: 10.1016/S0301-472X(02)00788-9 . ISSN   0301-472X. PMID   12031650.
  21. Lévesque, Jean-Pierre; Hendy, Jean; Takamatsu, Yasushi; Simmons, Paul J.; Bendall, Linda J. (2003-01-15). "Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide". The Journal of Clinical Investigation. 111 (2): 187–196. doi:10.1172/JCI15994. ISSN   0021-9738. PMC   151860 . PMID   12531874.
  22. Petit, Isabelle; Szyper-Kravitz, Martine; Nagler, Arnon; Lahav, Meir; Peled, Amnon; Habler, Liliana; Ponomaryov, Tanya; Taichman, Russell S.; Arenzana-Seisdedos, Fernando; Fujii, Nobutaka; Sandbank, Judith; Zipori, Dov; Lapidot, Tsvee (2002-07-01). "G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4" . Nature Immunology. 3 (7): 687–694. doi:10.1038/ni813. ISSN   1529-2916. PMID   12068293.
  23. Lévesque, Jean-Pierre; Takamatsu, Yasushi; Nilsson, Susan K.; Haylock, David N.; Simmons, Paul J. (2001-09-01). "Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor". Blood. 98 (5): 1289–1297. doi:10.1182/blood.V98.5.1289. ISSN   0006-4971. PMID   11520773.
  24. Levesque, Jean-Pierre; Liu, Fulu; Simmons, Paul J.; Betsuyaku, Tomoko; Senior, Robert M.; Pham, Christine; Link, Daniel C. (2004-07-01). "Characterization of hematopoietic progenitor mobilization in protease-deficient mice". Blood. 104 (1): 65–72. doi:10.1182/blood-2003-05-1589. ISSN   0006-4971. PMID   15010367.
  25. Christopher, Matthew J.; Rao, Mahil; Liu, Fulu; Woloszynek, Jill R.; Link, Daniel C. (2011-01-31). "Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice". Journal of Experimental Medicine. 208 (2): 251–260. doi:10.1084/jem.20101700. ISSN   0022-1007. PMC   3039862 . PMID   21282380.
  26. Lu, Xin-Jiang; Chen, Qiang; Rong, Ye-Jing; Yang, Guan-Jun; Li, Chang-Hong; Xu, Ning-Yi; Yu, Chao-Hui; Wang, Hui-Ying; Zhang, Shun; Shi, Yu-Hong; Chen, Jiong (2016-09-06). "LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells". Nature Communications. 7 (1): 12719. Bibcode:2016NatCo...712719L. doi:10.1038/ncomms12719. ISSN   2041-1723. PMC   5025878 . PMID   27596364.
  27. Kalatskaya, Irina; Berchiche, Yamina A.; Gravel, Stéphanie; Limberg, Brian J.; Rosenbaum, Jan S.; Heveker, Nikolaus (2009-05-01). "AMD3100 Is a CXCR7 Ligand with Allosteric Agonist Properties" . Molecular Pharmacology. 75 (5): 1240–1247. doi:10.1124/mol.108.053389. ISSN   0026-895X. PMID   19255243.
  28. DiPersio, John F.; Micallef, Ivana N.; Stiff, Patrick J.; Bolwell, Brian J.; Maziarz, Richard T.; Jacobsen, Eric; Nademanee, Auayporn; McCarty, John; Bridger, Gary; Calandra, Gary; 3101 Investigators (2009-10-01). "Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin's lymphoma". Journal of Clinical Oncology. 27 (28): 4767–4773. doi:10.1200/JCO.2008.20.7209. ISSN   1527-7755. PMID   19720922.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  29. Slater, Susan (2012-01-01). "Plerixafor". J Adv Pract Oncol. 3 (1): 49–54. PMC   4093299 . PMID   25031928.
  30. 1 2 Giralt, Sergio; Costa, Luciano; Schriber, Jeffrey; Dipersio, John; Maziarz, Richard; McCarty, John; Shaughnessy, Paul; Snyder, Edward; Bensinger, William; Copelan, Edward; Hosing, Chitra; Negrin, Robert; Petersen, Finn Bo; Rondelli, Damiano; Soiffer, Robert (2014-03-01). "Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations". Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 20 (3): 295–308. doi:10.1016/j.bbmt.2013.10.013. ISSN   1523-6536. PMID   24141007.
  31. Sutherland, D. R.; Anderson, L.; Keeney, M.; Nayar, R.; Chin-Yee, I. (1996-06-01). "The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering". Journal of Hematotherapy. 5 (3): 213–226. doi:10.1089/scd.1.1996.5.213. ISSN   1061-6128. PMID   8817388.