High-temperature corrosion

Last updated
High-temperature sulfur corrosion of a 12 CrMo 19 5 pipe stub High-temperature-sulfur-corrosion-of-a-12CrMo195-pipe-stub-01.jpg
High-temperature sulfur corrosion of a 12 CrMo 19 5 pipe stub

High-temperature corrosion is a mechanism of corrosion that takes place when gas turbines, diesel engines, furnaces or other machinery come in contact with hot gas containing certain contaminants. Fuel sometimes contains vanadium compounds or sulfates, which can form low melting point compounds during combustion. These liquid melted salts are strongly corrosive to stainless steel and other alloys normally resistant with respect to corrosion at high temperatures. Other types of high-temperature corrosion include high-temperature oxidation, [1] sulfidation, and carbonization. High temperature oxidation and other corrosion types are commonly modeled using the Deal-Grove model to account for diffusion and reaction dynamics.

Contents

Sulfates

Two types of sulfate-induced hot corrosion are generally distinguished: Type I takes place above the melting point of sodium sulfate, whereas Type II occurs below the melting point of sodium sulfate but in the presence of small amounts of SO3. [2] [3]

In Type I, the protective oxide scale is dissolved by the molten salt. Sulfur is released from the salt and diffuses into the metal substrate, forming grey- or blue-colored aluminum or chromium sulfides. With the aluminum or chromium sequestered, after the salt layer has been removed, the steel cannot rebuild a new protective oxide layer. Alkali sulfates are formed from sulfur trioxide and sodium-containing compounds. As the formation of vanadates is preferred, sulfates are formed only if the amount of alkali metals is higher than the corresponding amount of vanadium. [3]

The same kind of attack has been observed for potassium sulfate and magnesium sulfate.

Vanadium

Vanadium is present in petroleum, especially from Canada, western United States, Venezuela and the Caribbean region, often bound to porphyrine in organometallic complexes. [4] These complexes get concentrated on the higher-boiling fractions, which are then form the base of heavy residual fuel oils. Residues of sodium, primarily from sodium chloride and spent oil treatment chemicals, are also present in this petroleum fraction. Combusting any amount more than 100 ppm of sodium and vanadium will yield ash capable of causing fuel ash corrosion. [4]

Most fuels contain small traces of vanadium. The vanadium is oxidized to different vanadates. Molten vanadates present as deposits on metal can flux oxide scales and passivation layers. Furthermore, the presence of vanadium accelerates the diffusion of oxygen through the fused salt layer to the metal substrate. Vanadates can be present in semiconducting or ionic form, where the semiconducting form has significantly higher corrosivity as the oxygen is transported via oxygen vacancies. The ionic form, in contrast, transports oxygen by diffusion of the entire vanadate, which is significantly slower. The semiconducting form is rich in vanadium pentoxide. [3] [5]

At high temperatures or when there is a lower availability of oxygen, refractory oxides vanadium dioxide and vanadium trioxide form. These more reduced forms of vanadium do not promote corrosion. However, at conditions most common for burning, vanadium pentoxide gets formed. Together with sodium oxide, vanadates of various composition ratios are formed. Vanadates of composition approximating Na2O.6 V2O5 have the highest corrosion rates at the temperatures between 593 °C and 816 °C; at lower temperatures, the vanadate is in solid state, and at higher temperatures, vanadates with higher proportion of vanadium contribute the most to higher corrosion rates. [5] [3]

The solubility of the passivation layer oxides in the molten vanadates depends on the composition of the oxide layer. Iron(III) oxide is readily soluble in vanadates between Na2O.6 V2O5 and 6 Na2O.V2O5, at temperatures below 705 °C in amounts up to equal to the mass of the vanadate. This composition range is common for ashes, which aggravates the problem. Chromium(III) oxide, nickel(II) oxide, and cobalt(II) oxide are less soluble in vanadates; they convert the vanadates to the less corrosive ionic form and their vanadates are tightly adherent, refractory, and act as oxygen barriers. [5] [3]

The rate of corrosion caused by vanadates can be lowered by reducing the amount of excess air available for combustion to preferentially form the refractory oxides, using refractory coatings on the exposed surfaces, or using high-chromium alloys, such as 50% Ni/50% Cr or 40% Ni/60% Cr. [6]

The presence of sodium in a ratio of 1:3 gives the lowest melting point and must be avoided. This melting point of 535 °C can cause problems on the hot spots of the engine like piston crowns, valve seats, and turbochargers. [5] [3]

Lead

Lead can form a low-melting slag capable of fluxing protective oxide scales. [7] [8] Lead is more often known for causing stress corrosion cracking in common materials that are exposed to molten lead. The cracking tendency of lead has been known for some time, since most iron based alloys, including those used in steel containers and vessels for molten lead baths, usually fail due to cracking. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Chromium</span> Chemical element, symbol Cr and atomic number 24

Chromium is a chemical element; it has symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel, also known as inox, corrosion-resistant steel (CRES) and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains at least 10.5% chromium and usually nickel, as well as 0.2 to 2.11% carbon. Stainless steel's resistance to corrosion results from the chromium, which forms a passive film that can protect the material and self-heal in the presence of oxygen.

<span class="mw-page-title-main">Solder</span> Alloy used to join metal pieces

Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable for use as solder should have a lower melting point than the pieces to be joined. The solder should also be resistant to oxidative and corrosive effects that would degrade the joint over time. Solder used in making electrical connections also needs to have favorable electrical characteristics.

<span class="mw-page-title-main">Vanadium</span> Chemical element, symbol V and atomic number 23

Vanadium is a chemical element; it has symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer (passivation) somewhat stabilizes the free metal against further oxidation.

<span class="mw-page-title-main">Corrosion</span> Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Group 5 element</span> Group of elements in the periodic table

Group 5 is a group of elements in the periodic table. Group 5 contains vanadium (V), niobium (Nb), tantalum (Ta) and dubnium (Db). This group lies in the d-block of the periodic table. This group is sometimes called the vanadium group or vanadium family after its lightest member; however, the group itself has not acquired a trivial name because it belongs to the broader grouping of the transition metals.

<span class="mw-page-title-main">Flux (metallurgy)</span> Chemical used in metallurgy for cleaning or purifying molten metal

In metallurgy, a flux is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period and three of the sixth period. They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.

<span class="mw-page-title-main">Sodium–sulfur battery</span> Type of molten-salt battery

A sodium–sulfur (NaS) battery is a type of molten-salt battery that uses liquid sodium and liquid sulfur electrodes. This type of battery has a similar energy density to lithium-ion batteries, and is fabricated from inexpensive and non-toxic materials. However, due to the high operating temperature required, as well as the highly corrosive and reactive nature of sodium and sodium polysulfides, these batteries are primarily suited for stationary energy storage applications, rather than for use in vehicles. Molten Na-S batteries are scalable in size: there is a 1 MW microgrid support system on Catalina Island CA (USA) and a 50 MW/300 MWh system in Fukuoka, Kyusyu, (Japan).

<span class="mw-page-title-main">Refractory</span> Materials resistant to decomposition under high temperatures

In materials science, a refractory is a material that is resistant to decomposition by heat or chemical attack that retains its strength and rigidity at high temperatures. They are inorganic, non-metallic compounds that may be porous or non-porous, and their crystallinity varies widely: they may be crystalline, polycrystalline, amorphous, or composite. They are typically composed of oxides, carbides or nitrides of the following elements: silicon, aluminium, magnesium, calcium, boron, chromium and zirconium. Many refractories are ceramics, but some such as graphite are not, and some ceramics such as clay pottery are not considered refractory. Refractories are distinguished from the refractory metals, which are elemental metals and their alloys that have high melting temperatures.

<span class="mw-page-title-main">Molten carbonate fuel cell</span>

Molten-carbonate fuel cells (MCFCs) are high-temperature fuel cells that operate at temperatures of 600 °C and above.

Plating is a finishing process in which a metal is deposited on a surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.

<span class="mw-page-title-main">Pitting corrosion</span> Form of insidious localized corrosion in which a pit develops at the anode site

Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic while an unknown but potentially vast area becomes cathodic, leading to very localized galvanic corrosion. The corrosion penetrates the mass of the metal, with a limited diffusion of ions.

<span class="mw-page-title-main">Vanadium(V) oxide</span> Precursor to vanadium alloys and industrial catalyst

Vanadium(V) oxide (vanadia) is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of its high oxidation state, it is both an amphoteric oxide and an oxidizing agent. From the industrial perspective, it is the most important compound of vanadium, being the principal precursor to alloys of vanadium and is a widely used industrial catalyst.

<span class="mw-page-title-main">Superalloy</span> Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.

<span class="mw-page-title-main">Molten-salt battery</span> Type of battery that uses molten salts

Molten-salt batteries are a class of battery that uses molten salts as an electrolyte and offers both a high energy density and a high power density. Traditional non-rechargeable thermal batteries can be stored in their solid state at room temperature for long periods of time before being activated by heating. Rechargeable liquid-metal batteries are used for industrial power backup, special electric vehicles and for grid energy storage, to balance out intermittent renewable power sources such as solar panels and wind turbines.

<span class="mw-page-title-main">Glass-to-metal seal</span> Airtight seal which joins glass and metal surfaces

Glass-to-metal seals are a type of mechanical seal which joins glass and metal surfaces. They are very important elements in the construction of vacuum tubes, electric discharge tubes, incandescent light bulbs, glass-encapsulated semiconductor diodes, reed switches, glass windows in metal cases, and metal or ceramic packages of electronic components.

Alonizing is a diffusion metallizing process in that it is a thermochemical treatment that involves enriching the surface layer of an object with one or more metallic elements. Specifically, alonizing is the diffusion of aluminum into the surface of a base metal through high temperature vapors. The types of metals that can be alonized include all types of wrought and cast steels. This process results in an alloy with the surface properties of aluminum while retaining the base metal's inherent strength and rigidity. Therefore, alonizing does not change the high-temperature mechanical properties of the base metal, which is the advantage of alonizing over simply creating an aluminum alloy.

Lutetium vanadate is inorganic compound with ferromagnetic and semiconducting properties, with the chemical formula of Lu2V2O7 with the same structure as pyrochlore.

References

  1. Birks, N.; Meier, Gerald H.; Pettit, F. S. (2006). Introduction to the high-temperature oxidation of metals (2nd ed.). Cambridge, UK: Cambridge University Press. ISBN   0-511-16162-X. OCLC   77562951.
  2. Young, David John (2008). High Temperature Oxidation and Corrosion of Metals. ISBN   978-0-08-044587-8.
  3. 1 2 3 4 5 6 Lai, G. Y (January 2007). High-temperature corrosion and materials applications. p. 321. ISBN   978-0-87170-853-3.
  4. 1 2 Branan, Carl (2005-08-16). Rules of thumb for chemical engineers: A manual of quick, accurate solutions to everyday process engineering problems. p. 293. ISBN   978-0-7506-7856-8. Archived from the original on 2018-04-18. Retrieved 2021-02-08.
  5. 1 2 3 4 Chilingar, George V; Yen, Teh Fu (1978-01-01). Bitumens, asphalts, and tar sands. p. 232. ISBN   978-0-444-41619-3.
  6. Carl Branan Rules of thumb for chemical engineers: a manual of quick, accurate solutions to everyday process engineering problems Archived 2018-04-18 at the Wayback Machine Gulf Professional Publishing, 2005, ISBN   0-7506-7856-9 p. 294
  7. Schriner, Doug. "A Review of Slag Chemistry in Lead Recycling" (PDF).
  8. Treatise on Process Metallurgy. 2014. doi:10.1016/c2010-0-67121-5. ISBN   9780080969886.
  9. Fontana, Mars G. (1987). Corrosion engineering (3rd, international ed.). New York: McGraw-Hill. ISBN   0-07-100360-6. OCLC   77545140.