Higher local field

Last updated

In mathematics, a higher (-dimensional) local field is an important example of a complete discrete valuation field. Such fields are also sometimes called multi-dimensional local fields.

Contents

On the usual local fields (typically completions of number fields or the quotient fields of local rings of algebraic curves) there is a unique surjective discrete valuation (of rank 1) associated to a choice of a local parameter of the fields, unless they are archimedean local fields such as the real numbers and complex numbers. Similarly, there is a discrete valuation of rank n on almost all n-dimensional local fields, associated to a choice of n local parameters of the field. [1] In contrast to one-dimensional local fields, higher local fields have a sequence of residue fields. [2] There are different integral structures on higher local fields, depending how many residue fields information one wants to take into account. [2]

Geometrically, higher local fields appear via a process of localization and completion of local rings of higher dimensional schemes. [2] Higher local fields are an important part of the subject of higher dimensional number theory, forming the appropriate collection of objects for local considerations.

Definition

Finite fields have dimension 0 and complete discrete valuation fields with finite residue field have dimension one (it is natural to also define archimedean local fields such as R or C to have dimension 1), then we say a complete discrete valuation field has dimension n if its residue field has dimension n−1. Higher local fields are those of dimension greater than one, while one-dimensional local fields are the traditional local fields. We call the residue field of a finite-dimensional higher local field the 'first' residue field, its residue field is then the second residue field, and the pattern continues until we reach a finite field. [2]

Examples

Two-dimensional local fields are divided into the following classes:

Constructions

Higher local fields appear in a variety of contexts. A geometric example is as follows. Given a surface over a finite field of characteristic p, a curve on the surface and a point on the curve, take the local ring at the point. Then, complete this ring, localise it at the curve and complete the resulting ring. Finally, take the quotient field. The result is a two-dimensional local field over a finite field. [2]

There is also a construction using commutative algebra, which becomes technical for non-regular rings. The starting point is a Noetherian, regular, n-dimensional ring and a full flag of prime ideals such that their corresponding quotient ring is regular. A series of completions and localisations take place as above until an n-dimensional local field is reached.

Topologies on higher local fields

One-dimensional local fields are usually considered in the valuation topology, in which the discrete valuation is used to define open sets. This will not suffice for higher dimensional local fields, since one needs to take into account the topology at the residue level too. Higher local fields can be endowed with appropriate topologies (not uniquely defined) which address this issue. Such topologies are not the topologies associated with discrete valuations of rank n, if n > 1. In dimension two and higher the additive group of the field becomes a topological group which is not locally compact and the base of the topology is not countable. The most surprising thing is that the multiplication is not continuous; however, it is sequentially continuous, which suffices for all reasonable arithmetic purposes. There are also iterated IndPro approaches to replace topological considerations by more formal ones. [3]

Measure, integration and harmonic analysis on higher local fields

There is no translation invariant measure on two-dimensional local fields. Instead, there is a finitely additive translation invariant measure defined on the ring of sets generated by closed balls with respect to two-dimensional discrete valuations on the field, and taking values in formal power series R((X)) over reals. [4] This measure is also countably additive in a certain refined sense. It can be viewed as higher Haar measure on higher local fields. The additive group of every higher local field is non-canonically self-dual, and one can define a higher Fourier transform on appropriate spaces of functions. This leads to higher harmonic analysis. [5]

Higher local class field theory

Local class field theory in dimension one has its analogues in higher dimensions. The appropriate replacement for the multiplicative group becomes the nth Milnor K-group, where n is the dimension of the field, which then appears as the domain of a reciprocity map to the Galois group of the maximal abelian extension over the field. Even better is to work with the quotient of the nth Milnor K-group by its subgroup of elements divisible by every positive integer. Due to Fesenko theorem, [6] this quotient can also be viewed as the maximal separated topological quotient of the K-group endowed with appropriate higher dimensional topology. Higher local reciprocity homomorphism from this quotient of the nth Milnor K-group to the Galois group of the maximal abelian extension of the higher local field has many features similar to those of the one-dimensional local class field theory.

Higher local class field theory is compatible with class field theory at the residue field level, using the border map of Milnor K-theory to create a commutative diagram involving the reciprocity map on the level of the field and the residue field. [7]

General higher local class field theory was developed by Kazuya Kato [8] and by Ivan Fesenko. [9] [10] Higher local class field theory in positive characteristic was proposed by Aleksei Parshin. [11] [12]

Notes

  1. Fesenko, I.B., Vostokov, S.V. Local Fields and Their Extensions. American Mathematical Society, 1992, Chapter 1 and Appendix.
  2. 1 2 3 4 5 6 Fesenko, I., Kurihara, M. (eds.) Invitation to Higher Local Fields. Geometry and Topology Monographs, 2000, section 1 (Zhukov).
  3. Fesenko, I., Kurihara, M. (eds.) Invitation to Higher Local Fields. Geometry and Topology Monographs, 2000, several sections.
  4. Fesenko, I. Analysis on arithmetic schemes. I. Docum. Math., (2003), Kato's special volume, 261-284
  5. Fesenko, I., Measure, integration and elements of harmonic analysis on generalized loop spaces, Proceed. St. Petersburg Math. Soc., vol. 12 (2005), 179-199; AMS Transl. Series 2, vol. 219, 149-164, 2006
  6. I. Fesenko (2002). "Sequential topologies and quotients of Milnor K-groups of higher local fields" (PDF). St. Petersburg Mathematical Journal. 13.
  7. Fesenko, I., Kurihara, M. (eds.) Invitation to Higher Local Fields. Geometry and Topology Monographs, 2000, section 5 (Kurihara).
  8. K. Kato (1980). "A generalization of local class field theory by using K -groups. II". J. Fac. Sci. Univ. Tokyo. 27: 603–683.
  9. I. Fesenko (1991). "On class field theory of multidimensional local fields of positive characteristic". Adv. Sov. Math. 4: 103–127.
  10. I. Fesenko (1992). "Class field theory of multidimensional local fields of characteristic 0, with the residue field of positive characteristic". St. Petersburg Mathematical Journal. 3: 649–678.
  11. A. Parshin (1985). "Local class field theory". Proc. Steklov Inst. Math.: 157–185.
  12. A. Parshin (1991). "Galois cohomology and Brauer group of local fields": 191–201.{{cite journal}}: Cite journal requires |journal= (help)

Related Research Articles

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In mathematics, a field K is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation v and if its residue field k is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.

In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.

In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.

In mathematics, a formal group law is a formal power series behaving as if it were the product of a Lie group. They were introduced by S. Bochner (1946). The term formal group sometimes means the same as formal group law, and sometimes means one of several generalizations. Formal groups are intermediate between Lie groups and Lie algebras. They are used in algebraic number theory and algebraic topology.

In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of the p-adic numbersQp (where p is any prime number), or the field of formal Laurent series Fq((T)) over a finite field Fq.

In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.

In abstract algebra, an adelic algebraic group is a semitopological group defined by an algebraic group G over a number field K, and the adele ring A = A(K) of K. It consists of the points of G having values in A; the definition of the appropriate topology is straightforward only in case G is a linear algebraic group. In the case of G being an abelian variety, it presents a technical obstacle, though it is known that the concept is potentially useful in connection with Tamagawa numbers. Adelic algebraic groups are widely used in number theory, particularly for the theory of automorphic representations, and the arithmetic of quadratic forms.

In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field.

In mathematics, a Weil group, introduced by Weil (1951), is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field F, its Weil group is generally denoted WF. There also exists "finite level" modifications of the Galois groups: if E/F is a finite extension, then the relative Weil group of E/F is WE/F = WF/W c
E
 
.

In mathematics, specifically in local class field theory, the Hasse–Arf theorem is a result concerning jumps of the upper numbering filtration of the Galois group of a finite Galois extension. A special case of it when the residue fields are finite was originally proved by Helmut Hasse, and the general result was proved by Cahit Arf.

In the mathematical field of Galois cohomology, the local Euler characteristic formula is a result due to John Tate that computes the Euler characteristic of the group cohomology of the absolute Galois group GK of a non-archimedean local field K.

In mathematics, the Cohen structure theorem, introduced by Cohen (1946), describes the structure of complete Noetherian local rings.

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

Ivan Fesenko is a mathematician working in number theory and its interaction with other areas of modern mathematics.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

This is a glossary of commutative algebra.

References