Ind-completion

Last updated

In mathematics, the ind-completion or ind-construction is the process of freely adding filtered colimits to a given category C. The objects in this ind-completed category, denoted Ind(C), are known as direct systems, they are functors from a small filtered category I to C.

Contents

The dual concept is the pro-completion, Pro(C).

Definitions

Filtered categories

Direct systems depend on the notion of filtered categories. For example, the category N, whose objects are natural numbers, and with exactly one morphism from n to m whenever , is a filtered category.

Direct systems

A direct system or an ind-object in a category C is defined to be a functor

from a small filtered category I to C. For example, if I is the category N mentioned above, this datum is equivalent to a sequence

of objects in C together with morphisms as displayed.

The ind-completion

Ind-objects in C form a category ind-C.

Two ind-objects

and

determine a functor

Iop x JSets,

namely the functor

The set of morphisms between F and G in Ind(C) is defined to be the colimit of this functor in the second variable, followed by the limit in the first variable:

More colloquially, this means that a morphism consists of a collection of maps for each i, where is (depending on i) large enough.

Relation between C and Ind(C)

The final category I = {*} consisting of a single object * and only its identity morphism is an example of a filtered category. In particular, any object X in C gives rise to a functor

and therefore to a functor

This functor is, as a direct consequence of the definitions, fully faithful. Therefore Ind(C) can be regarded as a larger category than C.

Conversely, there need not in general be a natural functor

However, if C possesses all filtered colimits (also known as direct limits), then sending an ind-object (for some filtered category I) to its colimit

does give such a functor, which however is not in general an equivalence. Thus, even if C already has all filtered colimits, Ind(C) is a strictly larger category than C.

Objects in Ind(C) can be thought of as formal direct limits, so that some authors also denote such objects by

This notation is due to Pierre Deligne. [1]

Universal property of the ind-completion

The passage from a category C to Ind(C) amounts to freely adding filtered colimits to the category. This is why the construction is also referred to as the ind-completion of C. This is made precise by the following assertion: any functor taking values in a category D that has all filtered colimits extends to a functor that is uniquely determined by the requirements that its value on C is the original functor F and such that it preserves all filtered colimits.

Basic properties of ind-categories

Compact objects

Essentially by design of the morphisms in Ind(C), any object X of C is compact when regarded as an object of Ind(C), i.e., the corepresentable functor

preserves filtered colimits. This holds true no matter what C or the object X is, in contrast to the fact that X need not be compact in C. Conversely, any compact object in Ind(C) arises as the image of an object in X.

A category C is called compactly generated, if it is equivalent to for some small category . The ind-completion of the category FinSet of finite sets is the category of all sets. Similarly, if C is the category of finitely generated groups, ind-C is equivalent to the category of all groups.

Recognizing ind-completions

These identifications rely on the following facts: as was mentioned above, any functor taking values in a category D that has all filtered colimits, has an extension

that preserves filtered colimits. This extension is unique up to equivalence. First, this functor is essentially surjective if any object in D can be expressed as a filtered colimits of objects of the form for appropriate objects c in C. Second, is fully faithful if and only if the original functor F is fully faithful and if F sends arbitrary objects in C to compact objects in D.

Applying these facts to, say, the inclusion functor

the equivalence

expresses the fact that any set is the filtered colimit of finite sets (for example, any set is the union of its finite subsets, which is a filtered system) and moreover, that any finite set is compact when regarded as an object of Set.

The pro-completion

Like other categorical notions and constructions, the ind-completion admits a dual known as the pro-completion: the category Pro(C) is defined in terms of ind-object as

(The definition of pro-C is due to Grothendieck (1960). [2] )

Therefore, the objects of Pro(C) are inverse systems or pro-objects in C. By definition, these are direct system in the opposite category or, equivalently, functors

from a small cofiltered category I.

Examples of pro-categories

While Pro(C) exists for any category C, several special cases are noteworthy because of connections to other mathematical notions.

The appearance of topological notions in these pro-categories can be traced to the equivalence, which is itself a special case of Stone duality,

which sends a finite set to the power set (regarded as a finite Boolean algebra). The duality between pro- and ind-objects and known description of ind-completions also give rise to descriptions of certain opposite categories. For example, such considerations can be used to show that the opposite category of the category of vector spaces (over a fixed field) is equivalent to the category of linearly compact vector spaces and continuous linear maps between them. [4]

Applications

Pro-completions are less prominent than ind-completions, but applications include shape theory. Pro-objects also arise via their connection to pro-representable functors, for example in Grothendieck's Galois theory, and also in Schlessinger's criterion in deformation theory.

Tate objects are a mixture of ind- and pro-objects.

Infinity-categorical variants

The ind-completion (and, dually, the pro-completion) has been extended to ∞-categories by Lurie (2009).

See also

Notes

  1. Illusie, Luc, From Pierre Deligne’s secret garden: looking back at some of his letters, Japanese Journal of Mathematics, vol. 10, pp. 237–248 (2015)
  2. C.E. Aull; R. Lowen (31 December 2001). Handbook of the History of General Topology. Springer Science & Business Media. p. 1147. ISBN   978-0-7923-6970-7.
  3. Johnstone (1982 , §VI.2)
  4. Bergman & Hausknecht (1996 , Prop. 24.8)

Related Research Articles

In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In mathematics, a direct limit is a way to construct a object from many objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by .

In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products.

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, a quotient category is a category obtained from another category by identifying sets of morphisms. Formally, it is a quotient object in the category of categories, analogous to a quotient group or quotient space, but in the categorical setting.

In category theory, filtered categories generalize the notion of directed set understood as a category. There is a dual notion of cofiltered category, which will be recalled below.

In category theory, a branch of mathematics, a presheaf on a category is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.

In category theory, a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms that also need indexing. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a function from a fixed index set to the class of sets. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a functor from a fixed index category to some category.

In mathematics, derivators are a proposed frameworkpg 190-195 for homological algebra giving a foundation for both abelian and non-abelian homological algebra and various generalizations of it. They were introduced to address the deficiencies of derived categories and provide at the same time a language for homotopical algebra.

In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

In mathematics, a Grothendieck category is a certain kind of abelian category, introduced in Alexander Grothendieck's Tôhoku paper of 1957 in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962.

In category theory, a branch of mathematics, a stable ∞-category is an ∞-category such that

In category theory, a branch of mathematics, the density theorem states that every presheaf of sets is a colimit of representable presheaves in a canonical way.

In mathematics, compact objects, also referred to as finitely presented objects, or objects of finite presentation, are objects in a category satisfying a certain finiteness condition.

References