In physics, the history of centrifugal and centripetal forces illustrates a long and complex evolution of thought about the nature of forces, relativity, and the nature of physical laws.
Early scientific ideas about centrifugal force were based upon intuitive perception, and circular motion was considered somehow more "natural" than straight-line motion. According to Domenico Bertoloni-Meli:
Christiaan Huygens coined the term "centrifugal force" in his 1659 De Vi Centrifuga [2] and wrote of it in his 1673 Horologium Oscillatorium on pendulums. In 1676–77, Isaac Newton combined Kepler's laws of planetary motion with Huygens' ideas, refined them, and found
the proposition that by a centrifugal force reciprocally as the square of the distance a planet must revolve in an ellipsis about the center of the force placed in the lower umbilicus of the ellipsis, and with a radius drawn to that center, describe areas proportional to the times. [3]
Newton coined the term "centripetal force" (vis centripeta) in his discussions of gravity in his De motu corporum in gyrum , a 1684 manuscript which he sent to Edmond Halley. [4]
Gottfried Leibniz as part of his "solar vortex theory" conceived of centrifugal force as a real outward force which is induced by the circulation of the body upon which the force acts. An inverse cube law centrifugal force appears in an equation representing planetary orbits, including non-circular ones, as Leibniz described in his 1689 Tentamen de motuum coelestium causis. [5] Leibniz's equation is still used today to solve planetary orbital problems, although his solar vortex theory is no longer used as its basis. [6]
Leibniz produced an equation for planetary orbits in which the centrifugal force appeared as an outward inverse cube law force in the radial direction: [7]
Newton himself appears to have previously supported an approach similar to that of Leibniz. [8] Later, Newton in his Principia crucially limited the description of the dynamics of planetary motion to a frame of reference in which the point of attraction is fixed. In this description, Leibniz's centrifugal force was not needed and was replaced by only continually inward forces toward the fixed point. [7] Newton objected to Leibniz's equation on the grounds that it allowed for the centrifugal force to have a different value from the centripetal force, arguing on the basis of his third law of motion, that the centrifugal force and the centripetal force must constitute an equal and opposite action-reaction pair. In this however, Newton was mistaken, as the reactive centrifugal force which is required by the third law of motion is a completely separate concept from the centrifugal force of Leibniz's equation. [8] [9]
Huygens, who was, along with Leibniz, a neo-Cartesian and critic of Newton, concluded after a long correspondence that Leibniz's writings on celestial mechanics made no sense, and that his invocation of a harmonic vortex was logically redundant, because Leibniz's radial equation of motion follows trivially from Newton's laws. Even the most ardent modern defenders of the cogency of Leibniz's ideas acknowledge that his harmonic vortex as the basis of centrifugal force was dynamically superfluous. [10]
Newton described the role of centrifugal force upon the height of the oceans near the equator in the Principia :
Since the centrifugal force of the parts of the earth, arising from the earth's diurnal motion, which is to the force of gravity as 1 to 289, raises the waters under the equator to a height exceeding that under the poles by 85472 Paris feet, as above, in Prop. XIX., the force of the sun, which we have now shewed to be to the force of gravity as 1 to 12868200, and therefore is to that centrifugal force as 289 to 12868200, or as 1 to 44527, will be able to raise the waters in the places directly under and directly opposed to the sun to a height exceeding that in the places which are 90 degrees removed from the sun only by one Paris foot and 113 V inches; for this measure is to the measure of 85472 feet as 1 to 44527.
— Newton: Principia Corollary to Book II, Proposition XXXVI. Problem XVII
The effect of centrifugal force in countering gravity, as in this behavior of the tides, has led centrifugal force sometimes to be called "false gravity" or "imitation gravity" or "quasi-gravity". [11]
It wasn't until the latter half of the 18th century that the modern "fictitious force" understanding of the centrifugal force as a pseudo-force artifact of rotating reference frames took shape. [12] In a 1746 memoir by Daniel Bernoulli, "the idea that the centrifugal force is fictitious emerges unmistakably." [13] Bernoulli, in seeking to describe the motion of an object relative to an arbitrary point, showed that the magnitude of the centrifugal force depended on which arbitrary point was chosen to measure circular motion about. Later in the 18th century Joseph Louis Lagrange in his Mécanique Analytique explicitly stated that the centrifugal force depends on the rotation of a system of perpendicular axes. [13] In 1835, Gaspard-Gustave Coriolis analyzed arbitrary motion in rotating systems, specifically in relation to waterwheels. He coined the phrase "compound centrifugal force" for a term which bore a similar mathematical expression to that of centrifugal force, albeit that it was multiplied by a factor of two. [14] The force in question was perpendicular to both the velocity of an object relative to a rotating frame of reference and the axis of rotation of the frame. Compound centrifugal force eventually came to be known as the Coriolis Force. [15] [16]
The idea of centrifugal force is closely related to the notion of absolute rotation. In 1707 the Irish bishop George Berkeley took issue with the notion of absolute space, declaring that "motion cannot be understood except in relation to our or some other body". In considering a solitary globe, all forms of motion, uniform and accelerated, are unobservable in an otherwise empty universe. [17] This notion was followed up in modern times by Ernst Mach. For a single body in an empty universe, motion of any kind is inconceivable. Because rotation does not exist, centrifugal force does not exist. Of course, addition of a speck of matter just to establish a reference frame cannot cause the sudden appearance of centrifugal force, so it must be due to rotation relative to the entire mass of the universe. [18] The modern view is that centrifugal force is indeed an indicator of rotation, but relative to those frames of reference that exhibit the simplest laws of physics. [19] Thus, for example, if we wonder how rapidly our galaxy is rotating, we can make a model of the galaxy in which its rotation plays a part. The rate of rotation in this model that makes the observations of (for example) the flatness of the galaxy agree best with physical laws as we know them is the best estimate of the rate of rotation [20] (assuming other observations are in agreement with this assessment, such as isotropy of the background radiation of the universe). [21]
In the rotating bucket experiment, Newton observed the shape of the surface of water in a bucket as the bucket was spun on a rope. At first the water is flat, then, as it acquires the same rotation as the bucket, it becomes parabolic. Newton took this change as evidence that one could detect rotation relative to "absolute space" experimentally, in this instance by looking at the shape of the surface of the water.
Later scientists pointed out (as did Newton) that the laws of mechanics were the same for all observers that differed only by uniform translation; that is, all observers that differed in motion only by a constant velocity. Hence, "absolute space" was not preferred, but only one of a set of frames related by Galilean transformations. [22]
By the end of the nineteenth century, some physicists had concluded that the concept of absolute space is not really needed...they used the law of inertia to define the entire class of inertial frames. Purged of the concept of absolute space, Newton's laws do single out the class of inertial frames of reference, but assert their complete equality for the description of all mechanical phenomena.
— Laurie M. Brown, Abraham Pais, A. B. Pippard: Twentieth Century Physics, pp. 256-257
Ultimately this notion of the transformation properties of physical laws between frames played a more and more central role. [23] It was noted that accelerating frames exhibited "fictitious forces" like the centrifugal force. These forces did not behave under transformation like other forces, providing a means of distinguishing them. This peculiarity of these forces led to the names inertial forces, pseudo-forces or fictitious forces. In particular, fictitious forces did not appear at all in some frames: those frames differing from that of the fixed stars by only a constant velocity. In short, a frame tied to the "fixed stars" is merely a member of the class of "inertial frames", and absolute space is an unnecessary and logically untenable concept. The preferred, or "inertial frames", were identifiable by the absence of fictitious forces. [24] [25] [26]
The effect of his being in the noninertial frame is to require the observer to introduce a fictitious force into his calculations….
— Sidney Borowitz and Lawrence A Bornstein in A Contemporary View of Elementary Physics, p. 138
The equations of motion in a non-inertial system differ from the equations in an inertial system by additional terms called inertial forces. This allows us to detect experimentally the non-inertial nature of a system.
— V. I. Arnol'd: Mathematical Methods of Classical Mechanics Second Edition, p. 129
The idea of an inertial frame was extended further in the special theory of relativity. This theory posited that all physical laws should appear of the same form in inertial frames, not just the laws of mechanics. In particular, Maxwell's equations should apply in all frames. Because Maxwell's equations implied the same speed of light in the vacuum of free space for all inertial frames, inertial frames now were found to be related not by Galilean transformations, but by Poincaré transformations, of which a subset is the Lorentz transformations. That posit led to many ramifications, including Lorentz contractions and relativity of simultaneity. Einstein succeeded, through many clever thought experiments, in showing that these apparently odd ramifications in fact had very natural explanation upon looking at just how measurements and clocks actually were used. That is, these ideas flowed from operational definitions of measurement coupled with the experimental confirmation of the constancy of the speed of light.
Later the general theory of relativity further generalized the idea of frame independence of the laws of physics, and abolished the special position of inertial frames, at the cost of introducing curved space-time. Following an analogy with centrifugal force (sometimes called "artificial gravity" or "false gravity"), gravity itself became a fictitious force, [27] as enunciated in the equivalence principle. [28]
The principle of equivalence: There is no experiment observers can perform to distinguish whether an acceleration arises because of a gravitational force or because their reference frame is accelerating
— Douglas C. Giancoli Physics for Scientists and Engineers with Modern Physics, p. 155
In short, centrifugal force played a key early role in establishing the set of inertial frames of reference and the significance of fictitious forces, even aiding in the development of general relativity.
The modern interpretation is that centrifugal force in a rotating reference frame is a pseudo-force that appears in equations of motion in rotating frames of reference, to explain effects of inertia as seen in such frames. [29]
Leibniz's centrifugal force may be understood as an application of this conception, as a result of his viewing the motion of a planet along the radius vector, that is, from the standpoint of a special reference frame rotating with the planet. [7] [8] [30] Leibniz introduced the notions of vis viva (kinetic energy) [31] and action, [32] which eventually found full expression in the Lagrangian formulation of mechanics. In deriving Leibniz's radial equation from the Lagrangian standpoint, a rotating reference frame is not used explicitly, but the result is equivalent to that found using Newtonian vector mechanics in a co-rotating reference frame. [33] [34] [35]
Isaac Newton's rotating bucket argument was designed to demonstrate that true rotational motion cannot be defined as the relative rotation of the body with respect to the immediately surrounding bodies. It is one of five arguments from the "properties, causes, and effects" of "true motion and rest" that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space. Alternatively, these experiments provide an operational definition of what is meant by "absolute rotation", and do not pretend to address the question of "rotation relative to what?" General relativity dispenses with absolute space and with physics whose cause is external to the system, with the concept of geodesics of spacetime.
In physics, the Coriolis force is an inertial force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.
A force is an influence that can cause an object to change its velocity unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F.
In classical physics and special relativity, an inertial frame of reference is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame the laws of nature can be observed without the need for acceleration correction.
In physics and astronomy, a frame of reference is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points, defined as geometric points whose position is identified both mathematically and physically . An important special case is that of inertial reference frames, a stationary or uniformly moving frame.
In physics, the principle of relativity is the requirement that the equations describing the laws of physics have the same form in all admissible frames of reference.
In theoretical physics, particularly in discussions of gravitation theories, Mach's principle is the name given by Albert Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The hypothesis attempted to explain how rotating objects, such as gyroscopes and spinning celestial bodies, maintain a frame of reference.
Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ship was moving or stationary.
Absolute space and time is a concept in physics and philosophy about the properties of the universe. In physics, absolute space and time may be a preferred frame.
A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial.
As described by the third of Newton's laws of motion of classical mechanics, all forces occur in pairs such that if one object exerts a force on another object, then the second object exerts an equal and opposite reaction force on the first. The third law is also more generally stated as: "To every action there is always opposed an equal reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts." The attribution of which of the two forces is the action and which is the reaction is arbitrary. Either of the two can be considered the action, while the other is its associated reaction.
A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth.
In theoretical physics a Coriolis field is one of the apparent gravitational fields felt by a rotating or forcibly-accelerated body, together with the centrifugal field and the Euler field.
A non-inertial reference frame is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion are the same in all inertial frames, in non-inertial frames, they vary from frame to frame, depending on the acceleration.
In classical mechanics, a reactive centrifugal force forms part of an action–reaction pair with a centripetal force.
Centrifugal force is a fictitious force in Newtonian mechanics that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axis of rotation of the frame. The magnitude of the centrifugal force F on an object of mass m at the distance r from the axis of a rotating frame of reference with angular velocity ω is:
Classical mechanics is a physical theory describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics involved substantial change in the methods and philosophy of physics. The qualifier classical distinguishes this type of mechanics from physics developed after the revolutions in physics of the early 20th century, all of which revealed limitations in classical mechanics.
Isaac Newton's rotating spheres argument attempts to demonstrate that true rotational motion can be defined by observing the tension in the string joining two identical spheres. The basis of the argument is that all observers make two observations: the tension in the string joining the bodies and the rate of rotation of the spheres. Only for the truly non-rotating observer will the tension in the string be explained using only the observed rate of rotation. For all other observers a "correction" is required that accounts for the tension calculated being different from the one expected using the observed rate of rotation. It is one of five arguments from the "properties, causes, and effects" of true motion and rest that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space. Alternatively, these experiments provide an operational definition of what is meant by "absolute rotation", and do not pretend to address the question of "rotation relative to what?" General relativity dispenses with absolute space and with physics whose cause is external to the system, with the concept of geodesics of spacetime.
In physics, the concept of absolute rotation—rotation independent of any external reference—is a topic of debate about relativity, cosmology, and the nature of physical laws.
compound centrifugal force coriolis.
Try to fix Newton's bucket and rotate the heaven of fixed stars and then prove the absence of centrifugal forces
reference laws of physics.