History of chemical engineering

Last updated

Chemical engineering is a discipline that was developed out of those practicing "industrial chemistry" in the late 19th century. Before the Industrial Revolution (18th century), industrial chemicals and other consumer products such as soap were mainly produced through batch processing. Batch processing is labour-intensive and individuals mix predetermined amounts of ingredients in a vessel, heat, cool or pressurize the mixture for a predetermined length of time. The product may then be isolated, purified and tested to achieve a saleable product. Batch processes are still performed today on higher value products, such as pharmaceutical intermediates, speciality and formulated products such as perfumes and paints, or in food manufacture such as pure maple syrups, where a profit can still be made despite batch methods being slower and inefficient in terms of labour and equipment usage. Due to the application of Chemical Engineering techniques during manufacturing process development, larger volume chemicals are now produced through a continuous "assembly line" chemical processes. The Industrial Revolution was when a shift from batch to more continuous processing began to occur. Today commodity chemicals and petrochemicals are predominantly made using continuous manufacturing processes whereas speciality chemicals, fine chemicals and pharmaceuticals are made using batch processes.

Contents

Origin

The Industrial Revolution led to an unprecedented escalation in demand, both with regard to quantity and quality, for bulk chemicals such as soda ash [1] . This meant two things: one, the size of the activity and the efficiency of operation had to be enlarged, and two, serious alternatives to batch processing, such as continuous operation, had to be examined.

The first chemical engineer

Industrial chemistry was being practiced in the 1800s, and its study at British universities began with the publication by Friedrich Ludwig Knapp, Edmund Ronalds and Thomas Richardson of the important book Chemical Technology in 1848. [2] By the 1880s the engineering elements required to control chemical processes were being recognized as a distinct professional activity. Chemical engineering was first established as a profession in the United Kingdom after the first chemical engineering course was given at the University of Manchester in 1887 by George E. Davis in the form of twelve lectures covering various aspects of industrial chemical practice. [3] As a consequence George E. Davis is regarded as the world's first chemical engineer. Today, chemical engineering is a highly regarded profession. Chemical engineers with experience can become licensed Professional Engineers in the United States, aided by the National Society of Professional Engineers, or gain "Chartered" chemical-engineer status through the UK-based Institution of Chemical Engineers.

Professional associations

In 1880, the first attempt was made to form a Society of Chemical Engineers in London. This eventually resulted in the formation of the Society of Chemical Industry in 1881. The American Institute of Chemical Engineers (AIChE) was founded in 1908, and the UK Institution of Chemical Engineers (IChemE) in 1922. [4] These both now have substantial international membership. Some other countries now have chemical engineering societies or sections within chemical or engineering societies, but the AIChE, IChemE and IiChE remain the major ones in numbers and international spread: they are both open to suitably qualified professionals or students of chemical engineering anywhere in the world.

Definitions

For the other established branches of engineering, there were ready associations in the public's mind: Mechanical Engineering meant machines, Electrical Engineering meant circuitry, and Civil Engineering meant structures. Chemical engineering came to mean chemicals production.

Unit operation

Arthur Dehon Little is credited with the approach chemical engineers to this day take: process-oriented rather than product-oriented analysis and design. The concept of unit operations was developed to emphasize the underlying similarity among seemingly different chemical productions. For example, the principles are the same whether one is concerned about separating alcohol from water in a fermenter, or separating gasoline from diesel in a refinery, as long as the basis of separation is generation of a vapor of a different composition from the liquid. Therefore, such separation processes can be studied together as a unit operation, in this case called distillation.

Unit processes

In the early part of the last century, a parallel concept called Unit Processes was used to classify reactive processes. Thus oxidations, reductions, alkylations, etc. formed separate unit processes and were studied as such. This was natural considering the close affinity of chemical engineering to industrial chemistry at its inception. Gradually however, the subject of chemical reaction engineering has largely replaced the unit process concept. This subject looks at the entire body of chemical reactions as having a personality of its own, independent of the particular chemical species or chemical bonds involved. The latter does contribute to this personality in no small measure, but to design and operate chemical reactors, a knowledge of characteristics such as rate behaviour, thermodynamics, single or multiphase nature, etc. are more important. The emergence of chemical reaction engineering as a discipline signaled the severance of the umbilical cord connecting chemical engineering to industrial chemistry and cemented the unique character of the discipline.

See also

Related Research Articles

Chemical engineering branch of science that applies physical sciences and life sciences together with applied mathematics and economics to produce, transform, transport, and properly use chemicals, materials and energy

Chemical engineering is a branch of engineering that uses principles of chemistry, physics, mathematics, biology, and economics to efficiently use, produce, design, transport and transform energy and materials. The work of chemical engineers can range from the utilisation of nano-technology and nano-materials in the laboratory to large-scale industrial processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products.

Distillation method of separating mixtures based on differences in volatility of components in a boiling liquid mixture

Distillation is the process of separating the components or substances from a liquid mixture by using selective boiling and condensation. Distillation may result in essentially complete separation, or it may be a partial separation that increases the concentration of selected components in the mixture. In either case, the process exploits differences in the relative volatility of the mixture's components. In industrial chemistry, distillation is a unit operation of practically universal importance, but it is a physical separation process, not a chemical reaction.

Chemical engineer professional in the field of chemical engineering

In the field of engineering, a chemical engineer is a professional, who is equipped with the knowledge of chemical engineering, works principally in the chemical industry to convert basic raw materials into a variety of products, and deals with the design and operation of plants and equipment. In general, a chemical engineer is one who applies and uses principles of chemical engineering in any of its various practical applications; these often include 1) design, manufacture, and operation of plants and machinery in industrial chemical and related processes ; 2) development of new or adapted substances for products ranging from foods and beverages to cosmetics to cleaners to pharmaceutical ingredients, among many other products ; and 3) development of new technologies such as fuel cells, hydrogen power and nanotechnology, as well as working in fields wholly or partially derived from chemical engineering such as materials science, polymer engineering, and biomedical engineering.

Process engineering is the understanding and application of the fundamental principles and laws of nature that allow us to transform raw material and energy into products that are useful to society, at an industrial level. By taking advantage of the driving forces of nature such as pressure, temperature and concentration gradients, as well as the law of conservation of mass, process engineers can develop methods to synthesize and purify large quantities of desired chemical products. Process engineering focuses on the design, operation, control, optimization and intensification of chemical, physical, and biological processes. Process engineering encompasses a vast range of industries, such as agriculture, automotive, biotechnical, chemical, food, material development, mining, nuclear, petrochemical, pharmaceutical, and software development. The application of systematic computer-based methods to process engineering is "process systems engineering".

Microreactor

A microreactor or microstructured reactor or microchannel reactor is a device in which chemical reactions take place in a confinement with typical lateral dimensions below 1 mm; the most typical form of such confinement are microchannels. Microreactors are studied in the field of micro process engineering, together with other devices in which physical processes occur. The microreactor is usually a continuous flow reactor. Microreactors offer many advantages over conventional scale reactors, including vast improvements in energy efficiency, reaction speed and yield, safety, reliability, scalability, on-site/on-demand production, and a much finer degree of process control.

Chemical plant industrial process plant that manufactures chemicals

A chemical plant is an industrial process plant that manufactures chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.

The American Institute of Chemical Engineers (AIChE) is a professional organization for chemical engineers. AIChE was established in 1908 to distinguish chemical engineers as a profession independent of chemists and mechanical engineers.

Engineering ethics is the field of system of moral principles that apply to the practice of engineering. The field examines and sets the obligations by engineers to society, to their clients, and to the profession. As a scholarly discipline, it is closely related to subjects such as the philosophy of science, the philosophy of engineering, and the ethics of technology.

Trevor Kletz British chemical engineers

Trevor Asher Kletz, OBE, FREng, FRSC, FIChemE was a prolific British author on the topic of chemical engineering safety. He is credited with introducing the concept of inherent safety, and was a major promoter of Hazop. He is listed in The Palgrave Dictionary of Anglo-Jewish History.

Batch distillation refers to the use of distillation in batches, meaning that a mixture is distilled to separate it into its component fractions before the distillation still is again charged with more mixture and the process is repeated. This is in contrast with continuous distillation where the feedstock is added and the distillate drawn off without interruption. Batch distillation has always been an important part of the production of seasonal, or low capacity and high-purity chemicals. It is a very frequent separation process in the pharmaceutical industry.

Institution of Chemical Engineers organization

The Institution of Chemical Engineers (IChemE) is a global professional engineering institution with over 37,000 members in over 100 countries worldwide. It was founded in 1922 and awarded a Royal Charter in 1957.

Francis Pearson Lees, usually known as Frank Lees, was a chemical engineer and a Professor at Loughborough University who is noted for his contribution to the field of industrial safety.

William Hultz Walker was born in Pittsburgh, Pa., and graduated in 1890 at Penn State College and took his Ph.D. at Göttingen (1892). In 1894 he accepted the chair of industrial chemistry at the Massachusetts Institute of Technology, where from 1908 he was also director of the research laboratory of applied chemistry. Walker was vice president of the International Congress of Applied Chemistry in 1893 and president of the American Electrochemical Society in 1910. The New York Section of the American Chemical Society conferred on him its Nichols medal in 1908.

Industrial engineering Branch of engineering which deals with the optimization of complex processes or systems

Industrial engineering is an engineering profession that is concerned with the optimization of complex processes, systems, or organizations by developing, improving and implementing integrated systems of people, money, knowledge, information, equipment, energy and materials.

Arvind Varma American chemical engineer

Arvind Varma was the R. Games Slayter Distinguished Professor, School of Chemical Engineering at Purdue University. His research interests are in chemical and catalytic reaction engineering, and new energy sources.

Roger W. H. Sargent British chemical engineer

Roger William Herbert Sargent FREng FSA was an English chemical engineer who was Courtaulds professor of Chemical engineering at Imperial College London and "the father" of the discipline of Process Systems Engineering.

Professor Bodo Linnhoff is a chemical engineer and academic who developed pinch analysis, a technique for minimizing energy usage in the process industries. In its early days, the technique helped companies such as ICI and BASF to design plants that used roughly 30% less energy. As of the 1990s, Pinch Analysis became industrial standard in the oil refining and petrochemical industries. In 2010, Linnhoff founded a finance company, Harvester International, which nurtures innovation and guides smaller companies, such as Inview Technology.

Speciality chemicals are particular chemical products which provide a wide variety of effects on which many other industry sectors rely. Some of the categories of speciality chemicals are adhesives, agrichemicals, cleaning materials, colors, cosmetic additives, construction chemicals, elastomers, flavors, food additives, fragrances, industrial gases, lubricants, paints, polymers, surfactants, and textile auxiliaries. Other industrial sectors such as automotive, aerospace, food, cosmetics, agriculture, manufacturing, and textiles are highly dependent on such products.

References

  1. Kostick, Dennis (1998). "The origin of the U.S. natural and synthetic soda ash industries" (PDF). Wyoming State Geological Survey Public Information Circular. 39. Retrieved 19 February 2018.
  2. Ronalds, B.F. (2019). "Bringing Together Academic and Industrial Chemistry: Edmund Ronalds' Contribution". Substantia. 3 (1): 139–152.
  3. Delgass; et al. "Seventy-Five Years of Chemical Engineering". Purdue University. Retrieved 13 August 2013.
  4. W. F. Furter (1980) A Century of Chemical Engineering, Plenum Press (NY & London) ISBN   0-306-40895-3

Further reading