In computational complexity theory, the class IP (interactive proof) is the class of problems solvable by an interactive proof system. It is equal to the class PSPACE . The result was established in a series of papers: the first by Lund, Karloff, Fortnow, and Nisan showed that co-NP had multiple prover interactive proofs; [1] and the second, by Shamir, employed their technique to establish that IP=PSPACE. [2] The result is a famous example where the proof does not relativize. [3]
The concept of an interactive proof system was first introduced by Shafi Goldwasser, Silvio Micali, and Charles Rackoff in 1985. An interactive proof system consists of two machines, a prover, P, which presents a proof that a given string n is a member of some language, and a verifier, V, that checks that the presented proof is correct. The prover is assumed to be infinite in computation and storage, while the verifier is a probabilistic polynomial-time machine with access to a random bit string whose length is polynomial on the size of n. These two machines exchange a polynomial number, p(n), of messages and once the interaction is completed, the verifier must decide whether or not n is in the language, with only a 1/3 chance of error. (So any language in BPP is in IP, since then the verifier could simply ignore the prover and make the decision on its own.)
A language L belongs to IP if there exist V, P such that for all Q, w:
The Arthur–Merlin protocol, introduced by László Babai, is similar in nature, except that the number of rounds of interaction is bounded by a constant rather than a polynomial.
Goldwasser et al. have shown that public-coin protocols, where the random numbers used by the verifier are provided to the prover along with the challenges, are no less powerful than private-coin protocols. At most two additional rounds of interaction are required to replicate the effect of a private-coin protocol. The opposite inclusion is straightforward, because the verifier can always send to the prover the results of their private coin tosses, which proves that the two types of protocols are equivalent.
In the following section we prove that IP = PSPACE, an important theorem in computational complexity, which demonstrates that an interactive proof system can be used to decide whether a string is a member of a language in polynomial time, even though the traditional PSPACE proof may be exponentially long.
The proof can be divided in two parts, we show that IP ⊆ PSPACE and PSPACE ⊆ IP.
This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: This proof relies on IP being a fully public-coin protocol: the full state of the verifier can be deterministically computed from its message history. IP is usually initially considered in terms of private-coin protocols. These turn out to be equivalent, but this is highly nontrivial, arguably a more difficult fact to proven than IP ⊆ PSPACE itself.(November 2023) |
In order to demonstrate that IP ⊆ PSPACE, we present a simulation of an interactive proof system by a polynomial space machine. Now, we can define:
and for every 0 ≤ j ≤ p and every message history Mj, we inductively define the function NMj:
where:
where Prr is the probability taken over the random string r of length p. This expression is the average of NMj+1, weighted by the probability that the verifier sent message mj+1.
Take M0 to be the empty message sequence, here we will show that NM0 can be computed in polynomial space, and that NM0 = Pr[V accepts w]. First, to compute NM0, an algorithm can recursively calculate the values NMj for every j and Mj. Since the depth of the recursion is p, only polynomial space is necessary. The second requirement is that we need NM0 = Pr[V accepts w], the value needed to determine whether w is in A. We use induction to prove this as follows.
We must show that for every 0 ≤ j ≤ p and every Mj, NMj = Pr[V accepts w starting at Mj], and we will do this using induction on j. The base case is to prove for j = p. Then we will use induction to go from p down to 0.
The base case of j = p is fairly simple. Since mp is either accept or reject, if mp is accept, NMp is defined to be 1 and Pr[V accepts w starting at Mj] = 1 since the message stream indicates acceptance, thus the claim is true. If mp is reject, the argument is very similar.
For the inductive hypothesis, we assume that for some j+1 ≤ p and any message sequence Mj+1, NMj+1 = Pr[V accepts w starting at Mj+1] and then prove the hypothesis for j and any message sequence Mj.
If j is even, mj+1 is a message from V to P. By the definition of NMj,
Then, by the inductive hypothesis, we can say this is equal to
Finally, by definition, we can see that this is equal to Pr[V accepts w starting at Mj].
If j is odd, mj+1 is a message from P to V. By definition,
Then, by the inductive hypothesis, this equals
This is equal to Pr[V accepts w starting at Mj] since:
because the prover on the right-hand side could send the message mj+1 to maximize the expression on the left-hand side. And:
Since the same Prover cannot do any better than send that same message. Thus, this holds whether i is even or odd and the proof that IP ⊆ PSPACE is complete.
Here we have constructed a polynomial space machine that uses the best prover P for a particular string w in language A. We use this best prover in place of a prover with random input bits because we are able to try every set of random input bits in polynomial space. Since we have simulated an interactive proof system with a polynomial space machine, we have shown that IP ⊆ PSPACE, as desired.
In order to illustrate the technique that will be used to prove PSPACE ⊆ IP, we will first prove a weaker theorem, which was proven by Lund, et al.: #SAT ∈ IP. Then using the concepts from this proof we will extend it to show that TQBF ∈ IP. Since TQBF ∈ PSPACE-complete, and TQBF ∈ IP then PSPACE ⊆ IP.
We begin by showing that #SAT is in IP, where:
Note that this is different from the normal definition of #SAT, in that it is a decision problem, rather than a function.
First we use arithmetization to map the boolean formula with n variables, φ(b1, ..., bn) to a polynomial pφ(x1, ..., xn), where pφ mimics φ in that pφ is 1 if φ is true and 0 otherwise provided that the variables of pφ are assigned Boolean values. The Boolean operations ∨, ∧ and ¬ used in φ are simulated in pφ by replacing the operators in φ as shown in the table below.
a ∧ b | ab |
a ∨ b | a ∗ b := 1 − (1 − a)(1 − b) |
¬a | 1 − a |
As an example, would be converted into a polynomial as follows:
The operations ab and a ∗ b each result in a polynomial with a degree bounded by the sum of the degrees of the polynomials for a and b and hence, the degree of any variable is at most the length of φ.
Now let F be a finite field with order q > 2n; also demand that q be at least 1000. For each 0 ≤ i ≤ n, define a function fi on F, having parameters , and a single variable : For 0 ≤ i ≤ n and for let
Note that the value of f0 is the number of satisfying assignments of φ. f0 is a void function, with no variables.
Now the protocol for #SAT works as follows:
Note that this is a public-coin algorithm.
If φ has k satisfying assignments, clearly V will accept. If φ does not have k satisfying assignments we assume there is a prover that tries to convince V that φ does have k satisfying assignments. We show that this can only be done with low probability.
To prevent V from rejecting in phase 0, has to send an incorrect value to P. Then, in phase 1, must send an incorrect polynomial with the property that . When V chooses a random r1 to send to P,
This is because a polynomial in a single variable of degree at most d can have no more than d roots (unless it always evaluates to 0). So, any two polynomials in a single variable of degree at most d can be equal only in d places. Since |F| > 2n the chances of r1 being one of these values is at most if n > 10, or at most (n/1000) ≤ (n/n3) if n ≤ 10.
Generalizing this idea for the other phases we have for each 1 ≤ i ≤ n if
then for ri chosen randomly from F,
There are n phases, so the probability that is lucky because V selects at some stage a convenient ri is at most 1/n. So, no prover can make the verifier accept with probability greater than 1/n. We can also see from the definition that the verifier V operates in probabilistic polynomial time. Thus, #SAT ∈ IP.
In order to show that PSPACE is a subset of IP, we need to choose a PSPACE-complete problem and show that it is in IP. Once we show this, then it clear that PSPACE ⊆ IP. The proof technique demonstrated here is credited to Adi Shamir.
We know that TQBF is in PSPACE-Complete. So let ψ be a quantified boolean expression:
where φ is a CNF formula. Then Qi is a quantifier, either ∃ or ∀. Now fi is the same as in the previous proof, but now it also includes quantifiers.
Here, φ(a1, ..., ai) is φ with a1 to ai substituted for x1 to xi. Thus f0 is the truth value of ψ. In order to arithmetize ψ we must use the following rules:
where as before we define x ∗ y = 1 − (1 − x)(1 − y).
By using the method described in #SAT, we must face a problem that for any fi the degree of the resulting polynomial may double with each quantifier. In order to prevent this, we must introduce a new reduction operator R which will reduce the degrees of the polynomial without changing their behavior on Boolean inputs.
So now before we arithmetize we introduce a new expression:
or put another way:
Now for every i ≤ k we define the function fi. We also define to be the polynomial p(x1, ..., xm) which is obtained by arithmetizing φ. Now in order to keep the degree of the polynomial low, we define fi in terms of fi+1:
Now we can see that the reduction operation R, doesn't change the degree of the polynomial. Also it is important to see that the Rx operation doesn't change the value of the function on boolean inputs. So f0 is still the truth value of ψ, but the Rx value produces a result that is linear in x. Also after any we add in ψ′ in order to reduce the degree down to 1 after arithmetizing .
Now let's describe the protocol. If n is the length of ψ, all arithmetic operations in the protocol are over a field of size at least n4 where n is the length of ψ.
V uses coefficients to evaluate and . Then it checks that the polynomial degree is at most n and that the following identities are true:
If either fails then reject.
V → P: V picks a random r in F and sends it to P. (If then this r replaces the previous r).
Goto phase i + 1 where P must persuade V that is correct.
This is the end of the protocol description.
If ψ is true then V will accept when P follows the protocol. Likewise if is a malicious prover which lies, and if ψ is false, then will need to lie at phase 0 and send some value for f0. If at phase i, V has an incorrect value for then and will likely also be incorrect, and so forth. The probability for to get lucky on some random r is at most the degree of the polynomial divided by the field size: . The protocol runs through O(n2) phases, so the probability that gets lucky at some phase is ≤ 1/n. If is never lucky, then V will reject at phase k+1.
Since we have now shown that both IP ⊆ PSPACE and PSPACE ⊆ IP, we can conclude that IP = PSPACE as desired. Moreover, we have shown that any IP algorithm may be taken to be public-coin, since the reduction from PSPACE to IP has this property.
There are a number of variants of IP which slightly modify the definition of the interactive proof system. We summarize some of the better-known ones here.
A subset of IP is the deterministic Interactive Proof class, which is similar to IP but has a deterministic verifier (i.e. with no randomness). This class is equal to NP .
An equivalent definition of IP replaces the condition that the interaction succeeds with high probability on strings in the language with the requirement that it always succeeds:
This seemingly stronger criterion of "perfect completeness" does not change the complexity class IP, since any language with an interactive proof system may be given an interactive proof system with perfect completeness. [4]
In 1988, Goldwasser et al. created an even more powerful interactive proof system based on IP called MIP in which there are two independent provers. The two provers cannot communicate once the verifier has begun sending messages to them. Just as it's easier to tell if a criminal is lying if he and his partner are interrogated in separate rooms, it's considerably easier to detect a malicious prover trying to trick the verifier if there is another prover it can double-check with. In fact, this is so helpful that Babai, Fortnow, and Lund were able to show that MIP = NEXPTIME, the class of all problems solvable by a nondeterministic machine in exponential time, a very large class. Moreover, all languages in NP have zero-knowledge proofs in an MIP system, without any additional assumptions; this is only known for IP assuming the existence of one-way functions.
IPP (unbounded IP) is a variant of IP where we replace the BPP verifier by a PP verifier. More precisely, we modify the completeness and soundness conditions as follows:
Although IPP also equals PSPACE, IPP protocols behaves quite differently from IP with respect to oracles: IPP=PSPACE with respect to all oracles, while IP ≠ PSPACE with respect to almost all oracles. [5]
QIP is a version of IP replacing the BPP verifier by a BQP verifier, where BQP is the class of problems solvable by quantum computers in polynomial time. The messages are composed of qubits. [6] In 2009, Jain, Ji, Upadhyay, and Watrous proved that QIP also equals PSPACE, [7] implying that this change gives no additional power to the protocol. This subsumes a previous result of Kitaev and Watrous that QIP is contained in EXPTIME because QIP = QIP[3], so that more than three rounds are never necessary. [8]
Whereas IPP and QIP give more power to the verifier, a compIP system (competitive IP proof system) weakens the completeness condition in a way that weakens the prover:
Essentially, this makes the prover a BPP machine with access to an oracle for the language, but only in the completeness case, not the soundness case. The concept is that if a language is in compIP, then interactively proving it is in some sense as easy as deciding it. With the oracle, the prover can easily solve the problem, but its limited power makes it much more difficult to convince the verifier of anything. In fact, compIP isn't even known or believed to contain NP .
On the other hand, such a system can solve some problems believed to be hard. Somewhat paradoxically, though such a system is not believed to be able to solve all of NP, it can easily solve all NP-complete problems due to self-reducibility. This stems from the fact that if the language L is not NP-hard, the prover is substantially limited in power (as it can no longer decide all NP problems with its oracle).
Additionally, the graph nonisomorphism problem (which is a classical problem in IP) is also in compIP, since the only hard operation the prover has to do is isomorphism testing, which it can use the oracle to solve. Quadratic non-residuosity and graph isomorphism are also in compIP. [9] Note, Quadratic non-residuosity (QNR) is likely an easier problem than graph isomorphism as QNR is in UP intersect co-UP. [10]
{{cite journal}}
: CS1 maint: multiple names: authors list (link)In computational complexity theory, bounded-error quantum polynomial time (BQP) is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances. It is the quantum analogue to the complexity class BPP.
In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.
In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space.
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .
In computational complexity theory, an interactive proof system is an abstract machine that models computation as the exchange of messages between two parties: a prover and a verifier. The parties interact by exchanging messages in order to ascertain whether a given string belongs to a language or not. The prover possesses unlimited computational resources but cannot be trusted, while the verifier has bounded computation power but is assumed to be always honest. Messages are sent between the verifier and prover until the verifier has an answer to the problem and has "convinced" itself that it is correct.
In computational complexity theory, the time hierarchy theorems are important statements about time-bounded computation on Turing machines. Informally, these theorems say that given more time, a Turing machine can solve more problems. For example, there are problems that can be solved with n2 time but not n time, where n is the input length.
In computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory.
In computational complexity theory, the polynomial hierarchy is a hierarchy of complexity classes that generalize the classes NP and co-NP. Each class in the hierarchy is contained within PSPACE. The hierarchy can be defined using oracle machines or alternating Turing machines. It is a resource-bounded counterpart to the arithmetical hierarchy and analytical hierarchy from mathematical logic. The union of the classes in the hierarchy is denoted PH.
In computational complexity theory, an Arthur–Merlin protocol, introduced by Babai (1985), is an interactive proof system in which the verifier's coin tosses are constrained to be public. Goldwasser & Sipser (1986) proved that all (formal) languages with interactive proofs of arbitrary length with private coins also have interactive proofs with public coins.
In computational complexity theory, the complexity class NEXPTIME is the set of decision problems that can be solved by a non-deterministic Turing machine using time .
In computational complexity theory, an alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The concept of an ATM was set forth by Chandra and Stockmeyer and independently by Kozen in 1976, with a joint journal publication in 1981.
Descriptive complexity is a branch of computational complexity theory and of finite model theory that characterizes complexity classes by the type of logic needed to express the languages in them. For example, PH, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of second-order logic. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific abstract machines used to define them.
In computational complexity theory, P/poly is a complexity class representing problems that can be solved by small circuits. More precisely, it is the set of formal languages that have polynomial-size circuit families. It can also be defined equivalently in terms of Turing machines with advice, extra information supplied to the Turing machine along with its input, that may depend on the input length but not on the input itself. In this formulation, P/poly is the class of decision problems that can be solved by a polynomial-time Turing machine with advice strings of length polynomial in the input size. These two different definitions make P/poly central to circuit complexity and non-uniform complexity.
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.
In complexity theory, the Karp–Lipton theorem states that if the Boolean satisfiability problem (SAT) can be solved by Boolean circuits with a polynomial number of logic gates, then
In quantum mechanics, the Wigner–Weyl transform or Weyl–Wigner transform is the invertible mapping between functions in the quantum phase space formulation and Hilbert space operators in the Schrödinger picture.
In computational complexity theory, PostBQP is a complexity class consisting of all of the computational problems solvable in polynomial time on a quantum Turing machine with postselection and bounded error.
In computational complexity theory, the language TQBF is a formal language consisting of the true quantified Boolean formulas. A (fully) quantified Boolean formula is a formula in quantified propositional logic where every variable is quantified, using either existential or universal quantifiers, at the beginning of the sentence. Such a formula is equivalent to either true or false. If such a formula evaluates to true, then that formula is in the language TQBF. It is also known as QSAT.
In computational complexity theory, QMA, which stands for Quantum Merlin Arthur, is the set of languages for which, when a string is in the language, there is a polynomial-size quantum proof that convinces a polynomial time quantum verifier of this fact with high probability. Moreover, when the string is not in the language, every polynomial-size quantum state is rejected by the verifier with high probability.
In algebra, Zariski's lemma, proved by Oscar Zariski, states that, if a field K is finitely generated as an associative algebra over another field k, then K is a finite field extension of k.