In the study of graph algorithms, an implicit graph representation (or more simply implicit graph) is a graph whose vertices or edges are not represented as explicit objects in a computer's memory, but rather are determined algorithmically from some other input, for example a computable function.
The notion of an implicit graph is common in various search algorithms which are described in terms of graphs. In this context, an implicit graph may be defined as a set of rules to define all neighbors for any specified vertex. [1] This type of implicit graph representation is analogous to an adjacency list, in that it provides easy access to the neighbors of each vertex. For instance, in searching for a solution to a puzzle such as Rubik's Cube, one may define an implicit graph in which each vertex represents one of the possible states of the cube, and each edge represents a move from one state to another. It is straightforward to generate the neighbors of any vertex by trying all possible moves in the puzzle and determining the states reached by each of these moves; however, an implicit representation is necessary, as the state space of Rubik's Cube is too large to allow an algorithm to list all of its states. [2]
In computational complexity theory, several complexity classes have been defined in connection with implicit graphs, defined as above by a rule or algorithm for listing the neighbors of a vertex. For instance, PPA is the class of problems in which one is given as input an undirected implicit graph (in which vertices are n-bit binary strings, with a polynomial time algorithm for listing the neighbors of any vertex) and a vertex of odd degree in the graph, and must find a second vertex of odd degree. By the handshaking lemma, such a vertex exists; finding one is a problem in NP, but the problems that can be defined in this way may not necessarily be NP-complete, as it is unknown whether PPA = NP. PPAD is an analogous class defined on implicit directed graphs that has attracted attention in algorithmic game theory because it contains the problem of computing a Nash equilibrium. [3] The problem of testing reachability of one vertex to another in an implicit graph may also be used to characterize space-bounded nondeterministic complexity classes including NL (the class of problems that may be characterized by reachability in implicit directed graphs whose vertices are O(log n)-bit bitstrings), SL (the analogous class for undirected graphs), and PSPACE (the class of problems that may be characterized by reachability in implicit graphs with polynomial-length bitstrings). In this complexity-theoretic context, the vertices of an implicit graph may represent the states of a nondeterministic Turing machine, and the edges may represent possible state transitions, but implicit graphs may also be used to represent many other types of combinatorial structure. [4] PLS, another complexity class, captures the complexity of finding local optima in an implicit graph. [5]
Implicit graph models have also been used as a form of relativization in order to prove separations between complexity classes that are stronger than the known separations for non-relativized models. For instance, Childs et al. used neighborhood representations of implicit graphs to define a graph traversal problem that can be solved in polynomial time on a quantum computer but that requires exponential time to solve on any classical computer. [6]
In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines whether or not they are the endpoints of an edge in G. That is, this type of implicit representation is analogous to an adjacency matrix: it is straightforward to check whether two vertices are adjacent but finding the neighbors of any vertex may involve looping through all vertices and testing which ones are neighbors. [7]
Graph families with adjacency labeling schemes include:
Not all graph families have local structures. For some families, a simple counting argument proves that adjacency labeling schemes do not exist: only O(n log n) bits may be used to represent an entire graph, so a representation of this type can only exist when the number of n-vertex graphs in the given family F is at most 2O(n log n). Graph families that have larger numbers of graphs than this, such as the bipartite graphs or the triangle-free graphs, do not have adjacency labeling schemes. [8] [10] However, even families of graphs in which the number of graphs in the family is small might not have an adjacency labeling scheme; for instance, the family of graphs with fewer edges than vertices has 2O(n log n)n-vertex graphs but does not have an adjacency labeling scheme, because one could transform any given graph into a larger graph in this family by adding a new isolated vertex for each edge, without changing its labelability. [7] [10] Kannan et al. asked whether having a forbidden subgraph characterization and having at most 2O(n log n)n-vertex graphs are together enough to guarantee the existence of an adjacency labeling scheme; this question, which Spinrad restated as a conjecture, remains open. [8] [10] Among the families of graphs which satisfy the conditions of the conjecture and for which there is no known adjacency labeling scheme are the family of disk graphs and line segment intersection graphs.
If a graph family F has an adjacency labeling scheme, then the n-vertex graphs in F may be represented as induced subgraphs of a common induced universal graph of polynomial size, the graph consisting of all possible vertex identifiers. Conversely, if an induced universal graph of this type can be constructed, then the identities of its vertices may be used as labels in an adjacency labeling scheme. [8] For this application of implicit graph representations, it is important that the labels use as few bits as possible, because the number of bits in the labels translates directly into the number of vertices in the induced universal graph. Alstrup and Rauhe showed that any tree has an adjacency labeling scheme with log2n + O(log* n) bits per label, from which it follows that any graph with arboricity k has a scheme with k log2n + O(log* n) bits per label and a universal graph with nk2O(log* n) vertices. In particular, planar graphs have arboricity at most three, so they have universal graphs with a nearly-cubic number of vertices. [14] This bound was improved by Gavoille and Labourel who showed that planar graphs and minor-closed graph families have a labeling scheme with 2 log2n + O(log log n) bits per label, and that graphs of bounded treewidth have a labeling scheme with log2n + O(log log n) bits per label. [15] The bound for planar graphs was improved again by Bonamy, Gavoille, and Piliczuk who showed that planar graphs have a labelling scheme with (4/3+o(1))log2n bits per label. [16] Finally Dujmović et al showed that planar graphs have a labelling scheme with (1+o(1))log2n bits per label giving a universal graph with n1+o(1) vertices. [17]
The Aanderaa–Karp–Rosenberg conjecture concerns implicit graphs given as a set of labeled vertices with a black-box rule for determining whether any two vertices are adjacent. This definition differs from an adjacency labeling scheme in that the rule may be specific to a particular graph rather than being a generic rule that applies to all graphs in a family. Because of this difference, every graph has an implicit representation. For instance, the rule could be to look up the pair of vertices in a separate adjacency matrix. However, an algorithm that is given as input an implicit graph of this type must operate on it only through the implicit adjacency test, without reference to how the test is implemented.
A graph property is the question of whether a graph belongs to a given family of graphs; the answer must remain invariant under any relabeling of the vertices. In this context, the question to be determined is how many pairs of vertices must be tested for adjacency, in the worst case, before the property of interest can be determined to be true or false for a given implicit graph. Rivest and Vuillemin proved that any deterministic algorithm for any nontrivial graph property must test a quadratic number of pairs of vertices. [18] The full Aanderaa–Karp–Rosenberg conjecture is that any deterministic algorithm for a monotonic graph property (one that remains true if more edges are added to a graph with the property) must in some cases test every possible pair of vertices. Several cases of the conjecture have been proven to be true—for instance, it is known to be true for graphs with a prime number of vertices [19] —but the full conjecture remains open. Variants of the problem for randomized algorithms and quantum algorithms have also been studied.
Bender and Ron have shown that, in the same model used for the evasiveness conjecture, it is possible in only constant time to distinguish directed acyclic graphs from graphs that are very far from being acyclic. In contrast, such a fast time is not possible in neighborhood-based implicit graph models, [20]
In computer science, the clique problem is the computational problem of finding cliques in a graph. It has several different formulations depending on which cliques, and what information about the cliques, should be found. Common formulations of the clique problem include finding a maximum clique, finding a maximum weight clique in a weighted graph, listing all maximal cliques, and solving the decision problem of testing whether a graph contains a clique larger than a given size.
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.
In graph theory, a clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph is an induced subgraph of that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied.
In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.
A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.
In mathematics, a universal graph is an infinite graph that contains every finite graph as an induced subgraph. A universal graph of this type was first constructed by Richard Rado and is now called the Rado graph or random graph. More recent work has focused on universal graphs for a graph family F: that is, an infinite graph belonging to F that contains all finite graphs in F. For instance, the Henson graphs are universal in this sense for the i-clique-free graphs.
In graph theory, a dominating set for a graph G is a subset D of its vertices, such that any vertex of G is in D, or has a neighbor in D. The domination numberγ(G) is the number of vertices in a smallest dominating set for G.
The five color theorem is a result from graph theory that given a plane separated into regions, such as a political map of the countries of the world, the regions may be colored using no more than five colors in such a way that no two adjacent regions receive the same color.
In graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings in a book, a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie on this boundary line, called the spine, and the edges are required to stay within a single half-plane. The book thickness of a graph is the smallest possible number of half-planes for any book embedding of the graph. Book thickness is also called pagenumber, stacknumber or fixed outerthickness. Book embeddings have also been used to define several other graph invariants including the pagewidth and book crossing number.
In graph theory, a path decomposition of a graph G is, informally, a representation of G as a "thickened" path graph, and the pathwidth of G is a number that measures how much the path was thickened to form G. More formally, a path-decomposition is a sequence of subsets of vertices of G such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets, and the pathwidth is one less than the size of the largest set in such a decomposition. Pathwidth is also known as interval thickness, vertex separation number, or node searching number.
In computer science, graph traversal refers to the process of visiting each vertex in a graph. Such traversals are classified by the order in which the vertices are visited. Tree traversal is a special case of graph traversal.
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs.
In graph theory, the strong product is a way of combining two graphs to make a larger graph. Two vertices are adjacent in the strong product when they come from pairs of vertices in the factor graphs that are either adjacent or identical. The strong product is one of several different graph product operations that have been studied in graph theory. The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs.
In the mathematical field of graph theory, an automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the edge–vertex connectivity.
In graph theory, a clique cover or partition into cliques of a given undirected graph is a collection of cliques that cover the whole graph. A minimum clique cover is a clique cover that uses as few cliques as possible. The minimum k for which a clique cover exists is called the clique cover number of the given graph.
In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an n-vertex graph can partition the graph into disjoint subgraphs each of which has at most vertices.
In theoretical computer science, the Aanderaa–Karp–Rosenberg conjecture is a group of related conjectures about the number of questions of the form "Is there an edge between vertex and vertex ?" that have to be answered to determine whether or not an undirected graph has a particular property such as planarity or bipartiteness. They are named after Stål Aanderaa, Richard M. Karp, and Arnold L. Rosenberg. According to the conjecture, for a wide class of properties, no algorithm can guarantee that it will be able to skip any questions: any algorithm for determining whether the graph has the property, no matter how clever, might need to examine every pair of vertices before it can give its answer. A property satisfying this conjecture is called evasive.
In graph theory, a branch of mathematics, an apex graph is a graph that can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. It is an apex, not the apex because an apex graph may have more than one apex; for example, in the minimal nonplanar graphs K5 or K3,3, every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove.
In graph theory, a cop-win graph is an undirected graph on which the pursuer (cop) can always win a pursuit–evasion game against a robber, with the players taking alternating turns in which they can choose to move along an edge of a graph or stay put, until the cop lands on the robber's vertex. Finite cop-win graphs are also called dismantlable graphs or constructible graphs, because they can be dismantled by repeatedly removing a dominated vertex or constructed by repeatedly adding such a vertex. The cop-win graphs can be recognized in polynomial time by a greedy algorithm that constructs a dismantling order. They include the chordal graphs, and the graphs that contain a universal vertex.
The twin-width of an undirected graph is a natural number associated with the graph, used to study the parameterized complexity of graph algorithms. Intuitively, it measures how similar the graph is to a cograph, a type of graph that can be reduced to a single vertex by repeatedly merging together twins, vertices that have the same neighbors. The twin-width is defined from a sequence of repeated mergers where the vertices are not required to be twins, but have nearly equal sets of neighbors.
The standard 3×3×3 Rubik's Cube contains 4.3252 × 1019 states, and is too large to search exhaustively.
{{citation}}
: CS1 maint: location missing publisher (link).