Jonathan Stamler

Last updated

Jonathan S. Stamler
Jonathan Stamler.jpg
Jonathan Stamler in his laboratory
Born
Jonathan Solomon Stamler

(1959-06-23) June 23, 1959 (age 64)
NationalityAmerican
Alma mater
Known forIdentification of S-nitrosylation as a protein post-translational modification, characterizing its regulatory enzymes, and defining its physiological and disease relevance
Awards
  • Pew Scholar
  • HHMI Investigator
  • Outstanding Investigator Award in Basic Science (American Federation for Medical Research Foundation)
  • Korsemyer Award (ASCI Award; finalist)
  • Ewing Marion Kauffman Innovator
  • Coulter Translational Partnership Research Award
  • American Heart Association Distinguished Scientist Award
Scientific career
Fields
Institutions

Jonathan Solomon Stamler (born June 23, 1959) is an English-born American physician and scientist. He is known for his discovery of protein S-nitrosylation, the addition of a nitric oxide (NO) group to cysteine residues in proteins, as a ubiquitous cellular signal to regulate enzymatic activity and other key protein functions in bacteria, plants and animals, and particularly in transporting NO on cysteines in hemoglobin as the third gas in the respiratory cycle. [1] [2] [3]

Contents

Early life and education

Stamler was born in Wallingford, England on June 23, 1959 [4] to a British father and American mother, and lived in multiple countries (United Kingdom, Switzerland, Israel, United States) as a youth due to his father's global career. He played on the Israeli national (under 18) tennis team.

He graduated with a bachelor's degree from Brandeis University in 1981, and earned his M.D. degree from Icahn School of Medicine at Mount Sinai in 1985. [4] His residency and fellowship training in pulmonary medicine and in cardiovascular medicine was at Brigham and Women’s Hospital at Harvard Medical School. [4]

Career and research

Academic appointments

Stamler was appointed assistant professor in medicine at Harvard Medical School in 1993, and associate professor then Professor in Medicine at Duke University School of Medicine in 1993 and 1996, respectively, with recognition as the George Barth Geller Professor for Research in Cardiovascular Diseases in 2004. [4] He was an Investigator with the Howard Hughes Medical Institute from 1997 to 2005. [4] [5] In 2009, Stamler became Robert S. and Sylvia K. Reitman Family Foundation Distinguished Chair in Cardiovascular Innovation and Professor of Medicine, Professor of Biochemistry and founding Director of the Institute for Transformative Molecular Medicine at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center. [4] [6] In 2012, Stamler founded and became Director of the Harrington Discovery Institute at University Hospitals Cleveland Medical Center, and in 2016 was named Harrington Discovery Institute President. [4] [7] [8]

Research

At the start of Stamler's research career, nitric oxide (NO) gas had recently been identified as a signaling molecule that mediated vasodilation [9] by binding to the heme cofactor in the enzyme soluble guanylyl cyclase to produce cyclic guanosine monophosphate (cGMP). [10] However, most actions of NO being discovered at that time were not mediated by guanylyl cyclase/cGMP, [11] and high affinity binding of NO to the heme in red blood cell hemoglobin would inhibit NO actions in the vasculature, [10] presenting a quandary.

Stamler would provide a general mechanism to explain NO function in biology, which requires redox-activation of NO to NO+ (nitrosonium ion) to allow its conjugation to all main classes of proteins, and would thereby establish the prototypic redox-based cellular signaling mechanism in biology. Redox activation of NO would also provide a chemical route to stabilize NO bioactivity and escape hemoglobin inactivation.

Specifically, Stamler recognized that NO can be redox-activated [12] to bind cysteine residues in proteins [13] [14] [15] [16] and thiols in other molecules (e.g., glutathione, coenzyme A) to form S-nitrosothiols (SNOs) that are protected from heme inactivation thus providing a means to stabilize and regulate NO bioactivity, [14] [17] [18] [19] and he then identified the first endogenous SNOs. [14] [17] [15] Stamler further demonstrated that SNO modification of proteins, which he coined 'S-nitrosylation' to denote a signaling function, can regulate enzyme activity by modifying active site or allosteric site cysteines. [13] [14] [16] He and his colleagues would show that protein S-nitrosylation is widespread, regulating essentially all main classes of proteins: enzymes, globins, transcription factors, receptors, G proteins, protein kinases, ion channels and micro RNA processing machinery. [1] [20] That is, NO in the form of an SNO is a cellular signal that acts through post-translational modification of target proteins, akin to protein phosphorylation or ubiquitination. [21] Approximately 10,000 proteins, at >20,000 sites, have been reported to be nitrosylated, and it has been predicted that 70% of the proteome is SNO-modified across phylogeny. [22] [23]

More recently, Stamler and coworkers have demonstrated that protein S-nitrosylation is enzymatic, entailing specific enzymes that convert NO to SNO (S-nitrosothiol synthases), transfer NO groups to specific residues in proteins (transnitrosylases), and remove specific SNO groups from proteins (protein denitrosylases). [18] [24] [25] Enzymatic S-nitrosylation was identified first with hemoglobin (including nitrosylase and SNO synthase activities) [26] [27] [28] [29] and then later with multienzyme machinery in E. coli. [24]

Stamler's studies have established physiological significance for protein S-nitrosylation in diverse cellular processes (receptor signaling, apoptosis, gene regulation, metabolism and immunity), and fundamental physiological functions (skeletal muscle contractility, airway tone, cardiac response to adrenergic stimulation, neuroprotection and development). [21] [30] He has also discovered novel cellular functions (red blood cell mediated vasodilation) [20] [31] and revealed a new physiological principle: NO carried by an invariant hemoglobin cysteine residue is essential for oxygen delivery to tissues through vasodilation of the microcirculation, redefining the respiratory cycle as a 3-gas system (O2/NO/CO2). [1] [2] [3] [20] [31] [32] [33] [34] The SNO-hemoglobin content of RBCs is low in multiple clinical conditions characterized by microvascular dysfunction and tissue hypoxia, including pulmonary hypertension, chronic obstructive pulmonary disease, peripheral arterial disease and sickle cell disease, thereby impairing vasodilation by RBCs. [35] [36] Further, since hemoglobin S-nitrosylation is rapidly lost upon blood storage, the oxygen delivery capability of transfused blood is impaired. [37] [38] [39]

More broadly, accumulated evidence has demonstrated that S-nitrosylation of proteins plays important roles in many diseases, from heart failure to cancer to neurodegenerative disease. [40] [41] [42] [43] Stamler’s studies have shown aberrant S-nitrosylation in asthma, [44] [45] pulmonary hypertension, [46] heart failure, [47] [48] diabetes, [49] kidney injury, [50] [51] and infectious diseases. [52] [53]

Examining the hemoglobins of microbes and the parasitic worm Ascaris, Stamler found that ancient forms of hemoglobin either eliminate NO enzymatically (bacteria and yeast) or utilize it to eliminate oxygen from its anaerobic environment (Ascaris), showing that the primordial function of hemoglobin was in NO processing not oxygen transport. [54] [55] [56] [57] Stamler also identified trans-kingdom SNO signaling (operating between species as a general language between microbiota and animal host), since microbiota that produce NO can lead to widespread protein S-nitrosylation in a Caenorhabditis elegans host with profound genetic and physiological consequences. [30] Stamler also identified the enzymatic mechanism of nitroglycerin bioactivation and tolerance, thus solving a longstanding mystery (i.e., the generation of NO from nitroglycerin was awarded a Nobel Prize in 1998, but how was not understood). [58]

Entrepreneurial and philanthropic activities

Stamler is a co-founder of multiple biotechnology companies, including several that have had public offerings, and he has also licensed additional discoveries to large pharma. [4] He is also known for a track record of innovation and entrepreneurship as a founder of institutes, medical societies, innovation platforms and impact investment funds. His work has been covered in numerous lay publications, including the front page and science sections of the New York Times, as well as Time Magazine and The Economist, in books on the history of science and luck, and in works on outlier innovators.

Stamler is the founder the Harrington Project, a collaboration between the non-profit Harrington Discovery Institute at University Hospitals Health System in Cleveland, [4] [7] [8] (where he serves as president) and two mission-aligned for-profit partner organizations (Biomotiv, Advent-Harrington Impact Fund) to shepherd laboratory discovery through translation and into biotechnology commercialization and approved therapy. [4] [59] Under Stamler’s leadership, Harrington Discovery Institute has partnered with medical charities and non-profit organizations to target specific diseases, including the Foundation Fighting Blindness, [60] Alzheimer's Drug Discovery Foundation, [61] American Cancer Society, and Oxford University (Oxford-Harrington Rare Disease Centre). [62] He has built philanthropic partnerships with Morgan Stanley Wealth Management (Morgan Stanley GIFT Cures powered by Harrington Discovery Institute) and raised impact funds for investment companies (Biomotiv) and on Wall Street (Advent-Harrington Impact Fund with Advent Life Sciences; Morgan Stanley platform) that have totaled ~ $900 million for therapeutics research and development. [63] [64] [65] [66]

Related Research Articles

<span class="mw-page-title-main">Globin</span> Superfamily of oxygen-transporting globular proteins

The globins are a superfamily of heme-containing globular proteins, involved in binding and/or transporting oxygen. These proteins all incorporate the globin fold, a series of eight alpha helical segments. Two prominent members include myoglobin and hemoglobin. Both of these proteins reversibly bind oxygen via a heme prosthetic group. They are widely distributed in many organisms.

<span class="mw-page-title-main">TRIM5alpha</span>

Tripartite motif-containing protein 5 also known as RING finger protein 88 is a protein that in humans is encoded by the TRIM5 gene. The alpha isoform of this protein, TRIM5α, is a retrovirus restriction factor, which mediates a species-specific early block to retrovirus infection.

Gasotransmitters is a class of neurotransmitters. The molecules are distinguished from other bioactive endogenous gaseous signaling molecules based on a need to meet distinct characterization criteria. Currently, only nitric oxide, carbon monoxide, and hydrogen sulfide are accepted as gasotransmitters. According to in vitro models, gasotransmitters, like other gaseous signaling molecules, may bind to gasoreceptors and trigger signaling in the cells.

<span class="mw-page-title-main">Fungal prion</span> Prion that infects fungal hosts

A fungal prion is a prion that infects hosts which are fungi. Fungal prions are naturally occurring proteins that can switch between multiple, structurally distinct conformations, at least one of which is self-propagating and transmissible to other prions. This transmission of protein state represents an epigenetic phenomenon where information is encoded in the protein structure itself, instead of in nucleic acids. Several prion-forming proteins have been identified in fungi, primarily in the yeast Saccharomyces cerevisiae. These fungal prions are generally considered benign, and in some cases even confer a selectable advantage to the organism.

<span class="mw-page-title-main">Nitric oxide dioxygenase</span>

Nitric oxide dioxygenase (EC 1.14.12.17) is an enzyme that catalyzes the conversion of nitric oxide (NO) to nitrate (NO
3
) . The net reaction for the reaction catalyzed by nitric oxide dioxygenase is shown below:

<span class="mw-page-title-main">Formaldehyde dehydrogenase</span>

In enzymology, a formaldehyde dehydrogenase (EC 1.2.1.46) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">HBE1</span>

Hemoglobin subunit epsilon is a protein that in humans is encoded by the HBE1 gene.

<span class="mw-page-title-main">Glycylpeptide N-tetradecanoyltransferase 1</span> Protein-coding gene in the species Homo sapiens

Glycylpeptide N-tetradecanoyltransferase 1 also known as myristoyl-CoA:protein N-myristoyltransferase 1 (NMT-1) is an enzyme that in humans is encoded by the NMT1 gene. It belongs to the protein N-terminal methyltransferase and glycylpeptide N-tetradecanoyltransferase family of enzymes.

<span class="mw-page-title-main">IL18BP</span> Protein-coding gene in the species Homo sapiens

Interleukin-18-binding protein is a protein that in humans is encoded by the IL18BP gene.

<span class="mw-page-title-main">EIF2AK1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2-alpha kinase 1 is an enzyme that in humans is encoded by the EIF2AK1 gene.

<span class="mw-page-title-main">POP7</span> Protein-coding gene in the species Homo sapiens

Ribonuclease P protein subunit p20 is an enzyme that in humans is encoded by the POP7 gene.

<span class="mw-page-title-main">GLMN</span> Protein-coding gene in the species Homo sapiens

Glomulin is a protein that in humans is encoded by the GLMN gene.

<span class="mw-page-title-main">HBAP1</span> Pseudogene in the species Homo sapiens

Hemoglobin, alpha pseudogene 1, also known as HBAP1, is a human gene.

<span class="mw-page-title-main">WDR46</span> Protein-coding gene in the species Homo sapiens

WD repeat-containing protein 46 is a protein that in humans is encoded by the WDR46 gene.

<span class="mw-page-title-main">BOC (gene)</span> Protein-coding gene in the species Homo sapiens

Brother of CDO is a protein that in humans is encoded by the BOC gene.

<i>S</i>-Nitrosothiol Organic compounds or groups of the form –S–N=O

In organic chemistry, S-nitrosothiols, also known as thionitrites, are organic compounds or functional groups containing a nitroso group attached to the sulfur atom of a thiol. S-Nitrosothiols have the general formula R−S−N=O, where R denotes an organic group. Originally suggested by Ignarro to serve as intermediates in the action of organic nitrates, endogenous S-nitrosothiols were discovered by Stamler and colleagues and shown to represent a main source of NO bioactivity in vivo. More recently, S-nitrosothiols have been implicated as primary mediators of protein S-nitrosylation, the oxidative modification of cysteine thiol that provides ubiquitous regulation of protein function.

<span class="mw-page-title-main">GNAT3</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein G(t) subunit alpha-3, also known as gustducin alpha-3 chain, is a protein subunit that in humans is encoded by the GNAT3 gene.

In biochemistry, S-Nitrosylation is the covalent attachment of a nitric oxide group to a cysteine thiol within a protein to form an S-nitrosothiol (SNO). S-nitrosylation has diverse regulatory roles in bacteria, yeast and plants and in all mammalian cells. It thus operates as a fundamental mechanism for cellular signaling across phylogeny and accounts for the large part of NO bioactivity.

<i>S</i>-Nitrosoglutathione Chemical compound

S-Nitrosoglutathione (GSNO) is an endogenous S-nitrosothiol (SNO) that plays a critical role in nitric oxide (NO) signaling and is a source of bioavailable NO. NO coexists in cells with SNOs that serve as endogenous NO carriers and donors. SNOs spontaneously release NO at different rates and can be powerful terminators of free radical chain propagation reactions, by reacting directly with ROO• radicals, yielding nitro derivatives as end products. NO is generated intracellularly by the nitric oxide synthase (NOS) family of enzymes: nNOS, eNOS and iNOS while the in vivo source of many of the SNOs is unknown. In oxygenated buffers, however, formation of SNOs is due to oxidation of NO to dinitrogen trioxide (N2O3). Some evidence suggests that both exogenous NO and endogenously derived NO from nitric oxide synthases can react with glutathione to form GSNO.

Ted M. Dawson is an American neurologist and neuroscientist. He is the Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases and Director of the Institute for Cell Engineering at Johns Hopkins University School of Medicine. He has joint appointments in the Department of Neurology, Neuroscience and Department of Pharmacology and Molecular Sciences.

References

  1. 1 2 3 Blakeslee, Sandra (1996-03-21). "Surprise Discovery in Blood: Hemoglobin Has Bigger Role". The New York Times. Retrieved 2019-01-11.
  2. 1 2 Blakeslee, Sandra (1997-07-22). "What Controls Blood Flow? Blood". The New York Times. Retrieved 2019-01-11.
  3. 1 2 Saunders, Fenella (1997-01-01). "The NO & SNO Cycle". www.discovermagazine.com. Retrieved 2019-01-11.
  4. 1 2 3 4 5 6 7 8 9 10 Jonathan Stamler curriculum vitae (PDF), retrieved 2019-01-11
  5. "Jonathan S. Stamler". hhmi.org/. Howard Hughes Medical Institute. Retrieved 2019-01-11.
  6. "Director of Institute for Transformative Molecular Medicine, Inaugural Robert S. and Sylvia K. Reitman Family Foundation Distinguished Chair in Cardiovascular Innovation Announced". case.edu. Case Western Reserve University. 2009-09-17. Retrieved 2019-01-11.
  7. 1 2 Zeitner, Brie (2012-02-29). "Jonathan Stamler named director, Bob Keith to head drug development of Harrington project". The Plain Dealer.
  8. 1 2 Rosenblum, Jonah (2016-02-11). "Stamler gains 'genius' tag as Harrington Discovery Institute director". Cleveland Jewish News. Retrieved 2019-01-11.
  9. "1998 Nobel Prize in Medicine or Physiology". Nobel Foundation. Retrieved 2019-01-11.
  10. 1 2 Murad, Ferid (1994). "The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication". Recent Prog Horm Res. 49: 239–248. doi:10.1016/b978-0-12-571149-4.50016-7. ISBN   9780125711494. PMID   7511827.
  11. Garg, UC; Hasid, A (August 1990). "Nitric oxide-generating vasodilators inhibit mitogenesis and proliferation of BALB/C 3T3 fibroblasts by a cyclic GMP-independent mechanism". Biochem Biophys Res Commun. 171 (1): 474–479. doi:10.1016/0006-291x(90)91417-q. PMID   1697465.
  12. Stamler, JS; Singel, DJ; Loscalzo, J (1992). "Biochemistry of nitric oxide and its redox-activated forms". Science. 258 (5090): 1898–1902. Bibcode:1992Sci...258.1898S. doi:10.1126/science.1281928. PMID   1281928.
  13. 1 2 Stamler, JS; Simon, DI; Osborne, JA; Mullins, ME; Jaraki, O; Michel, T; Singel, DJ; Loscalzo, J (1992). "Exposure of sulphydryl-containing proteins to nitric oxide and endothelium-derived relaxing factor confers novel bioactivity and modulates their intrinsic functional properties.". In Moncada, S; Marletta, MA; Hibbs, Jr, JB (eds.). The Biology of Nitric Oxide: Part 1 Physiological and Clinical Aspects : Proceedings of the 2nd International Meeting on the Biology of Nitric Oxide. London: Portland Press. pp. 20–23. ISBN   1855780127.
  14. 1 2 3 4 Stamler, JS; Simon, DI; Osborne, JA; Mullins, ME; Jaraki, O; Michel, T; Singel, DJ; Loscalzo, J (1992-01-01). "S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds". Proc Natl Acad Sci U S A. 89 (1): 444–448. Bibcode:1992PNAS...89..444S. doi: 10.1073/pnas.89.1.444 . PMC   48254 . PMID   1346070.
  15. 1 2 Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J (1992). "Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin". Proc Natl Acad Sci U S A. 89 (16): 7674–7677. Bibcode:1992PNAS...89.7674S. doi: 10.1073/pnas.89.16.7674 . PMC   49773 . PMID   1502182.
  16. 1 2 Stamler, JS; Simon, DI; Jaraki, O; Osborne, JA; Francis, S; Mullins, M; Singel, D; Loscalzo, J (1992-09-01). "S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme". Proc Natl Acad Sci U S A. 89 (17): 8087–8091. Bibcode:1992PNAS...89.8087S. doi: 10.1073/pnas.89.17.8087 . PMC   49861 . PMID   1325644.
  17. 1 2 Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Arnelle D, Mullins ME, Sugarbaker DJ, Chee C, Singel DJ, Loscalzo J, Stamler JS (1993). "Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways". Proc Natl Acad Sci U S A. 90 (23): 10957–10961. Bibcode:1993PNAS...9010957G. doi: 10.1073/pnas.90.23.10957 . PMC   47900 . PMID   8248198.
  18. 1 2 Benhar, M; Forrester, MT; Stamler, JS (October 2009). "Protein denitrosylation: enzymatic mechanisms and cellular function". Nat Rev Mol Cell Biol. 10 (10): 721–732. doi:10.1038/nrm2764. PMID   19738628. S2CID   24437719.
  19. Anand P, Hausladen A, Wang YJ, Zhang GF, Stomberski C, Brunengraber H, Hess DT, Stamler JS (2014). "Identification of S-nitroso-CoA reductases that regulate protein S-nitrosylation". Proc Natl Acad Sci U S A. 111 (52): 18572–18577. Bibcode:2014PNAS..11118572A. doi: 10.1073/pnas.1417816112 . PMC   4284529 . PMID   25512491.
  20. 1 2 3 Jia, L; Bonaventura, C; Bonaventura, J; Stamler, JS (1996-03-21). "S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control". Nature. 380 (6571): 221–226. Bibcode:1996Natur.380..221J. doi:10.1038/380221a0. PMID   8637569. S2CID   4314697.
  21. 1 2 Hess, DT; Stamler, JS (2012-02-10). "Regulation by S-nitrosylation of protein post-translational modification". J Biol Chem. 287 (7): 4411–4418. doi: 10.1074/jbc.R111.285742 . PMC   3281651 . PMID   22147701.
  22. Stomberski, C; Hess, DT; Stamler, JS (2018-04-01). "Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling". Antioxidants & Redox Signaling. 30 (10): 1331–1351. doi:10.1089/ars.2017.7403. PMC   6391618 . PMID   29130312.
  23. Abunimer, A; Smith, K; Wu, TJ; Lam, P; Simonyan, V; Mazumder, R (2014-03-27). "Single-nucleotide variations in cardiac arrhythmias: prospects for genomics and proteomics based biomarker discovery and diagnostics". Genes (Basel). 5 (2): 254–269. doi: 10.3390/genes5020254 . PMC   4094932 . PMID   24705329.
  24. 1 2 Seth D, Hess DT, Hausladen A, Wang L, Wang YJ, Stamler JS (2018). "A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation". Mol Cell. 69 (3): 451–464.e6. doi:10.1016/j.molcel.2017.12.025. PMC   5999318 . PMID   29358078.
  25. "New Nitric Oxide-Converting Enzymes Discovered". genengnews.com. Mary Ann Liebert Inc. 2018-01-19.
  26. Pawloski, JR; Hess, DT; Stamler, JS (2001). "Export by red blood cells of nitric oxide bioactivity". Nature. 409 (6820): 622–626. doi:10.1038/35054560. PMID   11214321. S2CID   4387513.
  27. Angelo, M; Singel, DJ; Stamler, JS (2006). "An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate". Proc. Natl. Acad. Sci. USA. 103 (22): 8366–8371. Bibcode:2006PNAS..103.8366A. doi: 10.1073/pnas.0600942103 . PMC   1482500 . PMID   16717191.
  28. Stamler, JS; Hess, DT (2010). "Nascent Nitrosylases". Nature Cell Biology. 12 (11): 1024–1026. doi:10.1038/ncb1110-1024. PMID   20972426. S2CID   6508227.
  29. Premont, RT; Singel, DJ; Stamler, JS (2022). "The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine". Molecular Aspects of Medicine. 84: 101056. doi:10.1016/j.mam.2021.101056. PMC   8821404 . PMID   34852941.
  30. 1 2 Seth, P; Hsieh, PN; Jamal, S; Wang, L; Gygi, SP; Jain, MK; Coller, J; Stamler, JS (2019-02-21). "Regulation of MicroRNA Machinery and Development by Interspecies S-Nitrosylation". Cell. 176 (5): 1014–1025. doi:10.1016/j.cell.2019.01.037. PMC   6559381 . PMID   30794773.
  31. 1 2 Stamler, JS; Jia, L; Eu, JP; McMahon, TJ; Demchenko, IT; Bonaventura, J; Gernert, K; Piantadosi, CA (1997-06-27). "Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient". Science. 276 (5321): 2034–2037. doi:10.1126/science.276.5321.2034. PMID   9197264.
  32. Zhang, R; Hess, DT; Qian, Z; Hausladen, A; Fonseca, F; Chaube, R; Reynolds, JD; Stamler, JS (2015-05-19). "Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia". Proc Natl Acad Sci U S A. 112 (20): 6425–6430. Bibcode:2015PNAS..112.6425Z. doi: 10.1073/pnas.1502285112 . PMC   4443356 . PMID   25810253.
  33. Paddock, Catherine (2015-04-13). "Study shows blood cells need nitric oxide to deliver oxygen". Medical News Today. Healthline Media UK. Retrieved 2019-01-11.
  34. Zhang, R; Hausladen, A; Qian, Z; Liao, X; Premont, RT; Stamler, JS (2022-02-08). "Hypoxic vasodilatory defect and pulmonary hypertension in mice lacking hemoglobin β-cysteine93 S-nitrosylation". JCI Insight. 7 (3): e155234. doi:10.1172/jci.insight.155234. PMC   8855790 . PMID   34914637.
  35. Pawloski, JR; Hess, DT; Stamler, JS (2005-02-15). "Impaired vasodilation by red blood cells in sickle cell disease". Proc Natl Acad Sci U S A. 102 (7): 2531–2536. Bibcode:2005PNAS..102.2531P. doi: 10.1073/pnas.0409876102 . PMC   548996 . PMID   15699345.
  36. Leary, Warren E (1996-04-23). "Findings Intrigue Sickle Cell Experts". The New York Times. Retrieved 2019-01-11.
  37. Reynolds, JD; Ahearn, GS; Angelo, M; Zhang, J; Cobb, F; Stamler, JS (October 2007). "S-nitrosohemoglobin deficiency: a mechanism for loss of physiological activity in banked blood". Proc Natl Acad Sci U S A. 104 (43): 17058–17062. Bibcode:2007PNAS..10417058R. doi: 10.1073/pnas.0707958104 . PMC   2040473 . PMID   17940022.
  38. Reynolds, JD; Bennett, KM; Cina, AJ; Diesen, DL; Henderson, MB; Matto, F; Plante, A; Williamson, RA; Zandinejad, K; Demchenko, IT; Hess, DT; Piantadosi, CA; Stamler, JS (2013-07-09). "S-nitrosylation therapy to improve oxygen delivery of banked blood". Proc Natl Acad Sci U S A. 110 (28): 11529–11534. Bibcode:2013PNAS..11011529R. doi: 10.1073/pnas.1306489110 . PMC   3710799 . PMID   23798386.
  39. Park, Alice (2007-10-08). "Why Banked Blood Goes Bad". Time. Retrieved 2019-01-11.[ dead link ]
  40. Foster MW, McMahon TJ, Stamler JS (2003). "S-nitrosylation in health and disease". Trends Mol Med. 9 (4): 160–168. doi:10.1016/S1471-4914(03)00028-5. PMID   12727142.
  41. Foster MW, Hess DT, Stamler JS (2009). "Protein S-nitrosylation in health and disease: a current perspective". Trends Mol Med. 15 (9): 391–404. doi:10.1016/j.molmed.2009.06.007. PMC   3106339 . PMID   19726230.
  42. Nakamura, T; Lipton, SA (2017-12-01). "'SNO'-Storms Compromise Protein Activity and Mitochondrial Metabolism in Neurodegenerative Disorders". Trends Endocrinol Metab. 28 (12): 879–892. doi:10.1016/j.tem.2017.10.004. PMC   5701818 . PMID   29097102.
  43. Reis, AKCA; Stern, A; Monteiro, HP (2019-04-05). "S-nitrosothiols and H2S donors: Potential chemo-therapeutic agents in cancer". Redox Biol. 27: 101190. doi:10.1016/j.redox.2019.101190. PMC   6859576 . PMID   30981679. 101190.
  44. Gaston, B; Sears, S; Woods, J; Hunt, J; Ponaman, M; McMahon, T; Stamler, JS (1998-05-02). "Bronchodilator S-nitrosothiol deficiency in asthmatic respiratory failure". Lancet. 351 (9112): 1317–1319. doi:10.1016/S0140-6736(97)07485-0. PMID   9643794. S2CID   28776994.
  45. Que, LG; Liu, L; Yan, Y; Whitehead, GS; Gavett, SH; Schwartz, DA; Stamler, JS (2005-06-10). "Protection from experimental asthma by an endogenous bronchodilator". Science. 308 (5728): 1618–1621. Bibcode:2005Sci...308.1618Q. doi:10.1126/science.1108228. PMC   2128762 . PMID   15919956.
  46. McMahon TJ, Ahearn GS, Moya MP, Gow AJ, Huang YC, Luchsinger BP, Nudelman R, Yan Y, Krichman AD, Bashore TM, Califf RM, Singel DJ, Piantadosi CA, Tapson VF, Stamler JS (2005). "A nitric oxide processing defect of red blood cells created by hypoxia: deficiency of S-nitrosohemoglobin in pulmonary hypertension". Proc Natl Acad Sci U S A. 102 (41): 14801–14806. Bibcode:2005PNAS..10214801M. doi: 10.1073/pnas.0506957102 . PMC   1253588 . PMID   16203976.
  47. Hayashi, H; Hess, DT; Zhang, R; Sugi, K; Gao, H; Tan, BL; Bowles, DE; Milano, CA; Jain, MK; Koch, WJ; Stamler, JS (2018-05-03). "S-Nitrosylation of β-Arrestins Biases Receptor Signaling and Confers Ligand Independence". Mol Cell. 70 (3): 473–487. doi:10.1016/j.molcel.2018.03.034. PMC   5940012 . PMID   29727618.
  48. "Heart disease severity may depend on nitric oxide levels". ScienceDaily. 2018-05-14. Retrieved 2019-01-11.
  49. Qian, Q; Zhang, Z; Orwig, A; Chen, S; Ding, WX; Xu, Y; Kunz, RC; Lind, NRL; Stamler, JS; Yang, L (2018-02-01). "S-Nitrosoglutathione Reductase Dysfunction Contributes to Obesity-Associated Hepatic Insulin Resistance via Regulating Autophagy". Diabetes. 67 (2): 193–207. doi: 10.2337/db17-0223 . PMC   10515702 . PMID   29074597.
  50. Zhou, HL; Zhang, R; Anand, P; Stomberski, CT; Qian, Z; Hausladen, A; Wang, L; Rhee, EP; Parikh, SM; Karumanchi, SA; Stamler, JS (2019-01-10). "Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury". Nature. 565 (7737): 96–100. Bibcode:2019Natur.565...96Z. doi:10.1038/s41586-018-0749-z. PMC   6318002 . PMID   30487609.
  51. "Re-programming the body's energy pathway boosts kidney self-repair". medicalexpress.com. Science X. 2018-11-28. Retrieved 2019-01-11.
  52. de Jesús-Berríos M, Liu L, Nussbaum JC, Cox GM, Stamler JS, Heitman J (2003). "Enzymes that counteract nitrosative stress promote fungal virulence". Curr Biol. 13 (22): 1963–1968. doi: 10.1016/j.cub.2003.10.029 . PMID   14614821.
  53. Elphinstone RE, Besla R, Shikatani EA, Lu Z, Hausladen A, Davies M, Robbins CS, Husain M, Stamler JS, Kain KC (2017). "S-Nitrosoglutathione Reductase Deficiency Confers Improved Survival and Neurological Outcome in Experimental Cerebral Malaria". Infect Immun. 85 (9): e00371-17. doi:10.1128/IAI.00371-17. PMC   5563579 . PMID   28674030.
  54. Hausladen, A; Gow, AJ; Stamler, JS (1998-11-24). "Nitrosative stress: metabolic pathway involving the flavohemoglobin". Proc Natl Acad Sci USA. 95 (24): 14100–14105. Bibcode:1998PNAS...9514100H. doi: 10.1073/pnas.95.24.14100 . PMC   24333 . PMID   9826660.
  55. Liu, L; Zeng, M; Hausladen, A; Heitman, J; Stamler, JS (2000-04-25). "Protection from nitrosative stress by yeast flavohemoglobin". Proc Natl Acad Sci USA. 97 (9): 4672–4676. Bibcode:2000PNAS...97.4672L. doi: 10.1073/pnas.090083597 . PMC   18291 . PMID   10758168.
  56. Minning, DM; Gow, AJ; Bonaventura, J; Braun, R; Dewhirst, M; Goldberg, DE; Stamler, JS (1999-09-30). "Ascaris haemoglobin is a nitric oxide-activated 'deoxygenase'". Nature. 401 (6752): 497–502. Bibcode:1999Natur.401..497M. doi:10.1038/46822. PMID   10519555. S2CID   3486708.
  57. Blakeslee, Sandra (1999-10-05). "Thanks to a 'Horrible Worm,' New Ideas on Hemoglobin". The New York Times. Retrieved 2019-01-11.
  58. Chen, Z; Zhang, J; Stamler, JS (2002-06-11). "Identification of the enzymatic mechanism of nitroglycerin bioactivation". Proc Natl Acad Sci USA. 99 (12): 8306–8311. doi: 10.1073/pnas.122225199 . PMC   123063 . PMID   12048254.
  59. "BioMotiv Launches Novel Drug Development Operation, Names Leadership Team". prnewswire.com/ (Press release). PR Newswire. Retrieved 2022-05-16.
  60. "Foundation Fighting Blindness and Harrington Discovery Institute Partner to Accelerate Drug Development for Critical Causes of Blindness". prnewswire.com/ (Press release). PR Newswire. Retrieved 2022-05-16.
  61. "ADDF-Harrington". harringtondiscovery.org/. Harrington Discovery Institute. Retrieved 2022-05-16.
  62. "Fund For Cures UK". fundforcures.org.uk/. Harrington Discovery Institute. Retrieved 2022-05-16.
  63. "Morgan Stanley GIFT Cures". harringtondiscovery.org/. Harrington Discovery Institute. Retrieved 2022-05-16.
  64. "Morgan Stanley GIFT Cures". msgiftcures.donorgift.org/. Morgan Stanley. Retrieved 2022-05-16.
  65. "New Morgan Stanley GIFT Cures Program to Advance Drug Discovery Research into Life-Saving and Life-Enhancing Cures and Treatments". morganstanley.com/. Morgan Stanley. Retrieved 2022-05-16.
  66. "Advent Life Sciences starts impact fund". globalimpactventuring.com/. Global Impact Venturing. Retrieved 2022-05-16.