Kim Kimoon

Last updated
Kim Kimoon
Chemistry professor Kim Kimoon gimgimun.jpg
Born1954 (age 6970)
Nationality South Korean
Alma mater Seoul National University (B.S., 1977)
Korea Advanced Institute of Science and Technology (M.S., 1979)
Stanford University (Ph.D., 1986)
Known for Supramolecular chemistry, self-assembly, cucurbituril, metal-organic framework
Awards Izatt-Christensen Award (2012)
Top Scientist and Technologist Award of Korea (2008)
Ho-Am Prize (2006)
Scientific career
Fields Chemistry
Institutions Pohang University of Science and Technology, Institute for Basic Science
Thesis Electrocatalytic four-electron reduction of dioxygen by metalloporphyrin adsorbed on graphite  (1986)
Doctoral advisors James P. Collman, Mu Shik Jon
Korean name
Hangul
김기문
Hanja
Revised Romanization Gim Gi-mun
McCune–Reischauer Kim Kimun
Website Center for Self-assembly and Complexity

Kim Kimoon (born 1954) is a South Korean chemist and professor in the Department of Chemistry at Pohang University of Science and Technology (POSTECH). He is the first and current director of the Center for Self-assembly and Complexity at the Institute for Basic Science. Kim has authored or coauthored 300 papers which have been cited more than 30,000 times [1] and he holds a number of patents. [2] His work has been published in Nature , Nature Chemistry , Angewandte Chemie , and JACS , among others. He has been a Clarivate Analytics Highly Cited Researcher in the field of chemistry in 2014, 2015, 2016. [3]

Contents

His research has focused on developing novel functional materials and devices based on supramolecular chemistry. [4] In particular, his research group has worked on a various functional materials based on cucurbiturils (CB[n]s), [5] [6] [7] [8] [9] pumpkin-shaped macrocyclic molecules, and metal-organic porous materials for catalysis, separation, and gas storage. [10] [11] [12] [13] [14] [15] His discovery and isolation of new members of the CB[n] family reported in 2000 had a major impact in expanding the field. Additionally, his paper published in Nature in 2000, [5] which reported the synthesis of homochiral nanoporous crystalline materials using self-assembly and an application for a chiral catalyst, is notable as it was placed among 35 top notable chemical related papers published in Nature from 1950 to 2000. [16] His research has been recognized by a number of awards, including the Izatt-Christensen Award in 2012. [17]

Education

Kim received his B.S. degree from Seoul National University in 1977, M.S. degree from Korea Advanced Institute of Science and Technology (KAIST) in 1979 under Prof. Mu Shik Jon, and Ph.D. degree from Stanford University in 1986 under Prof. James P. Collman. After graduating, he did two years of postdoctoral work at Northwestern University under Prof. James A. Ibers.

Career

Kim started his academic career at the Department of Chemistry at POSTECH in 1988, where he is now a Distinguished University Professor (POSTECH Fellow). In 1997, Kim was appointed director of the Center for Smart Supramolecules supported by the Creative Research Initiatives program under the Korean Ministry of Education, Science and Technology (MEST). He later founded the Division of Advanced Materials Science in POSTECH, launched in 2008 with support from the World Class University Project. On August 1, 2012, he was named founding director of the Center for Self-assembly and Complexity (CSC) under the Institute for Basic Science (IBS). [18] The center focuses on non-equilibrium self-assembly, molecular recognition in complex systems, and emergent materials. [19]

Cucurbiturils

Cucurbiturils were first synthesized in 1905 by Robert Behrend, by condensing glycoluril with formaldehyde, [20] but their structure was not elucidated until 1981. [21] The field expanded as cucurbituril homologues CB5, CB7, and CB8 were discovered and isolated by Kim Kimoon in 2000, which laid the foundation for the development of cucurbituril-based chemistry and supramolecular chemistry. [22] Cucurbituril homologues display unique chemical properties as macrocyclic host molecules with exceptionally high binding affinities, and they have found use in host-guest chemistry and formation of supramolecular structures/assembly. This brought more attention to the field, allowing CB10 and CB14 to later be discovered. [23] The first CB-dedicated workshop was held in Maryland in 2007 with support from National Science Foundation [24] which paved the way for the International Conference on Cucurbiturils to be been held every two years from 2009 which was first organized by Kim and hosted at POSTECH. [25] [26] His research on supermolecular chemistry, especially his work on cucurbituril, led him to receive the Izatt-Christensen Award. [17] In 2018, Kim co-authored the first textbook on cucurbiturils. [24] [27]

Metal-organic framework

Kim has also focused his research on multifunctional modular porous materials, such as metal-organic frameworks and porous organic cages. Using an enantiopure organic building block and metal ion, his team was able to synthesize a homochiral metal–organic porous material, POST-1, and demonstrate that it works as a chiral catalyst. [5] his group contributed to the development of the modular porous materials field by demonstrating synthetic methodologies and applications. The team later designed and synthesized porphyrin boxes, a new class of porous organic cages consisting of porphyrins. Porphyrin boxes have been applied as a synthetic ion channel, electrochemical catalysis, and construction of hierarchical superstructures. [28]

Self-assembly via irreversible covalent bonds

Unlike conventional nanostructures built by reversible interactions/bonds, Kim discovered that the irreversible thiol-ene polymerization of rigid, disk-shaped building blocks resulted in robust hollow polymer nanocapsules with a narrow size distribution. [29] He was able to control the size, shape, property and functionality of the nanostructured materials, including spheres, [29] [30] film, [31] toroids, and tubular structures. [32] They have applications in therapeutics, [33] [34] [35] catalysis, [36] separation, [37] and electronics. The research demonstrated an alternate route for construction of nanostructured materials with specific morphology via self-assembly. [38]

Awards

Memberships

See also

Related Research Articles

Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi–pi interactions and electrostatic effects.

<span class="mw-page-title-main">Host–guest chemistry</span> Supramolecular structures held together other than by covalent bonds

In supramolecular chemistry, host–guest chemistry describes complexes that are composed of two or more molecules or ions that are held together in unique structural relationships by forces other than those of full covalent bonds. Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent bonding. Non-covalent bonding is critical in maintaining the 3D structure of large molecules, such as proteins and is involved in many biological processes in which large molecules bind specifically but transiently to one another.

<span class="mw-page-title-main">Cucurbituril</span> Ring molecule able to store other molecules within itself

In host-guest chemistry, cucurbiturils are macrocyclic molecules made of glycoluril monomers linked by methylene bridges. The oxygen atoms are located along the edges of the band and are tilted inwards, forming a partly enclosed cavity (cavitand). The name is derived from the resemblance of this molecule with a pumpkin of the family of Cucurbitaceae.

<span class="mw-page-title-main">Cryptand</span> Cyclic, multidentate ligands adept at encapsulating cations

In chemistry, cryptands are a family of synthetic, bicyclic and polycyclic, multidentate ligands for a variety of cations. The Nobel Prize for Chemistry in 1987 was given to Donald J. Cram, Jean-Marie Lehn, and Charles J. Pedersen for their efforts in discovering and determining uses of cryptands and crown ethers, thus launching the now flourishing field of supramolecular chemistry. The term cryptand implies that this ligand binds substrates in a crypt, interring the guest as in a burial. These molecules are three-dimensional analogues of crown ethers but are more selective and strong as complexes for the guest ions. The resulting complexes are lipophilic.

<span class="mw-page-title-main">Corannulene</span> Chemical compound

Corannulene is a polycyclic aromatic hydrocarbon with chemical formula C20H10. The molecule consists of a cyclopentane ring fused with 5 benzene rings, so another name for it is [5]circulene. It is of scientific interest because it is a geodesic polyarene and can be considered a fragment of buckminsterfullerene. Due to this connection and also its bowl shape, corannulene is also known as a buckybowl. Buckybowls are fragments of buckyballs. Corannulene exhibits a bowl-to-bowl inversion with an inversion barrier of 10.2 kcal/mol (42.7 kJ/mol) at −64 °C.

Dynamic covalent chemistry (DCvC) is a synthetic strategy employed by chemists to make complex molecular and supramolecular assemblies from discrete molecular building blocks. DCvC has allowed access to complex assemblies such as covalent organic frameworks, molecular knots, polymers, and novel macrocycles. Not to be confused with dynamic combinatorial chemistry, DCvC concerns only covalent bonding interactions. As such, it only encompasses a subset of supramolecular chemistries.

<span class="mw-page-title-main">Achim Müller</span> German scientist

Achim Müller is a German chemist. He is Professor Emeritus at the Faculty of Chemistry, University of Bielefeld.

In polymer chemistry and materials science, the term "polymer" refers to large molecules whose structure is composed of multiple repeating units. Supramolecular polymers are a new category of polymers that can potentially be used for material applications beyond the limits of conventional polymers. By definition, supramolecular polymers are polymeric arrays of monomeric units that are connected by reversible and highly directional secondary interactions–that is, non-covalent bonds. These non-covalent interactions include van der Waals interactions, hydrogen bonding, Coulomb or ionic interactions, π-π stacking, metal coordination, halogen bonding, chalcogen bonding, and host–guest interaction. The direction and strength of the interactions are precisely tuned so that the array of molecules behaves as a polymer in dilute and concentrated solution, as well as in the bulk.

In chemistry, a halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. Like a hydrogen bond, the result is not a formal chemical bond, but rather a strong electrostatic attraction. Mathematically, the interaction can be decomposed in two terms: one describing an electrostatic, orbital-mixing charge-transfer and another describing electron-cloud dispersion. Halogen bonds find application in supramolecular chemistry; drug design and biochemistry; crystal engineering and liquid crystals; and organic catalysis.

Covalent organic frameworks (COFs) are a class of porous polymers that form two- or three-dimensional structures through reactions between organic precursors resulting in strong, covalent bonds to afford porous, stable, and crystalline materials. COFs emerged as a field from the overarching domain of organic materials as researchers optimized both synthetic control and precursor selection. These improvements to coordination chemistry enabled non-porous and amorphous organic materials such as organic polymers to advance into the construction of porous, crystalline materials with rigid structures that granted exceptional material stability in a wide range of solvents and conditions. Through the development of reticular chemistry, precise synthetic control was achieved and resulted in ordered, nano-porous structures with highly preferential structural orientation and properties which could be synergistically enhanced and amplified. With judicious selection of COF secondary building units (SBUs), or precursors, the final structure could be predetermined, and modified with exceptional control enabling fine-tuning of emergent properties. This level of control facilitates the COF material to be designed, synthesized, and utilized in various applications, many times with metrics on scale or surpassing that of the current state-of-the-art approaches.

<span class="mw-page-title-main">Young-Tae Chang</span> South Korean chemist

Young-Tae Chang is a South Korean chemist. He is a professor of chemistry at Pohang University of Science and Technology (POSTECH) and Associate Director under Kim Kimoon at the Center for Self-assembly and Complexity at the Institute for Basic Science located on the POSTECH campus.

<span class="mw-page-title-main">Two-dimensional polymer</span>

A two-dimensional polymer (2DP) is a sheet-like monomolecular macromolecule consisting of laterally connected repeat units with end groups along all edges. This recent definition of 2DP is based on Hermann Staudinger's polymer concept from the 1920s. According to this, covalent long chain molecules ("Makromoleküle") do exist and are composed of a sequence of linearly connected repeat units and end groups at both termini.

<span class="mw-page-title-main">Harry Anderson (chemist)</span> British chemist

Harry Laurence Anderson is a British chemist in the Department of Chemistry, University of Oxford. He is well known for his contributions in the syntheses of supramolecular systems, exploration of the extraordinary physical properties of large pi-conjugated systems, and synthesis of cyclo[18]carbon. He is a Professor of Chemistry at Keble College, Oxford.

<span class="mw-page-title-main">Kwang Soo Kim</span> South Korean chemist and physicist (born 1950)

Kwang Soo Kim is a South Korean professor in chemistry, an adjunct professor in physics, and the director of Center for Superfunctional Materials (CSM), of Ulsan National Institute of Science and Technology (UNIST) in South Korea. He received his B.S. and M.S. degrees in Applied Chemistry from Seoul National University and also an M.S. degree in Physics from Korea Advanced Institute of Science and Technology (KAIST) (1975). He obtained his Ph.D. degree from University of California, Berkeley (1982). His research fields include Theoretical/Computational Chemistry/Physics and Experimental Nanosciences.

<span class="mw-page-title-main">Philip A. Gale</span>

Philip Alan Gale is an Australian/British chemist, Deputy Dean of Science and Professor of Chemistry at the Faculty of Science, University of Technology Sydney. He is notable for his work on the supramolecular chemistry of anions.

<span class="mw-page-title-main">Rajendra Rathore (chemist)</span>

Rajendra Rathore was an organic chemist and professor at Marquette University in Milwaukee, Wisconsin as Pfletschinger-Habermann professor of organic chemistry. He made important contributions in the area of supramolecular chemistry, synthesis of novel electro-active molecules, and drug discovery. Rathore died on 16 February 2018, after complications from chronic pulmonary sarcoidosis.

<span class="mw-page-title-main">Dmitrii Perepichka</span>

Dmitrii "Dima" F. Perepichka is the Chair of Chemistry Department and Sir William C. MacDonald Chair Professor in Chemistry at McGill University. His research interest are primarily in the area of organic electronics. He has contributed in the understanding of structural electronics effects of organic conjugated materials at molecular, supramolecular, and macromolecular levels via the study of small molecules, supramolecular (co-)assemblies, polymers, covalent organic frameworks, and on-surface assemblies/polymers.

<span class="mw-page-title-main">Helma Wennemers</span> German chemist

Helma B. Wennemers is a German organic chemist. She is a professor of organic chemistry at the Swiss Federal Institute of Technology in Zurich.

<span class="mw-page-title-main">Jayaraman Sivaguru</span>

Jayaraman Sivaguru (Siva) is the Antonia and Marshall Wilson Professor of Chemistry and the Associate Director, Center for Photochemical Sciences at the Department of Chemistry, Bowling Green State University, Bowling Green, Ohio. He is a recipient of 2008 National Science Foundation CAREER Award, 2010 Grammaticakis-Neumann Prize from the Swiss Chemical Society, 2011 young-investigator award from the Inter-American Photochemical Society (I-APS), and 2012-young investigator award from Sigma Xi. His honors also include Excellence in Research award, 2011 Excellence in Teaching award, and the 2012 PeltierAward for Innovation in Teaching. Prof. Siaguru was a visiting young professor at the Global Centre for Excellence at Osaka University, Japan and was a visiting fellow for the Chinese Academy of Sciences President's International Fellowship Initiative in 2018. He is an editor for the Journal of Photochemistry and Photobiology A: Chemistry and from 2020 serves as the co-Editor-in-Chief of Journal of Photochemistry and Photobiology published by Elsevier. He is an international board member of the International Union of Pure and Applied Chemistry (IUPAC) photochemistry symposium.

<span class="mw-page-title-main">Transition metal porphyrin complexes</span>

Transition metal porphyrin complexes are a family of coordination complexes of the conjugate base of porphyrins. Iron porphyrin complexes occur widely in Nature, which has stimulated extensive studies on related synthetic complexes. The metal-porphyrin interaction is a strong one such that metalloporphyrins are thermally robust. They are catalysts and exhibit rich optical properties, although these complexes remain mainly of academic interest.

References

  1. "Director's Biography". Institute for Basic Science. Center for Self-assembly and Complexity. Retrieved 11 November 2018.
  2. "Patents by Inventor Ki-Moon Kim". Justia. Retrieved 11 February 2019.
  3. "IBS Places First Among Korean Institutions by Featuring 9 Scientists in List of Highly Cited Researchers". Institute for Basic Science . 4 December 2018. Retrieved 12 February 2019.
  4. "ICOMC 2018 - Kimoon Kim". 28th International Conference on Organometallic Chemistry. 2018. Retrieved 11 February 2019.
  5. 1 2 3 Seo, Jung Soo; Whang, Dongmok; Lee, Hyoyoung; Jun, Sung Im; Oh, Jinho; Jeon, Young Jin; Kim, Kimoon (27 April 2000). "A homochiral metal-organic porous material for enantioselective separation and catalysis". Nature . 404 (6781): 982–986. Bibcode:2000Natur.404..982S. doi:10.1038/35010088. PMID   10801124. S2CID   1159701.
  6. Kim, Jaheon; Jung, In-Sun; Kim, Soo-Young; Lee, Eunsung; Kang, Jin-Koo; Sakamoto, Shigeru; Yamaguchi, Kentaro; Kim, Kimoon (2000). "New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril(n=5, 7, and 8)". Journal of the American Chemical Society . 122 (3): 540–541. doi:10.1021/ja993376p.
  7. J. W. Lee; S. Samal; N. Selvapalam; H.-J. Kim; K. Kim (2003). "Cucurbituril Homologues and Derivatives: New Opportunities in Supramolecular Chemistry". Acc. Chem. Res. 36 (8): 621–630. doi:10.1021/ar020254k. PMID   12924959. S2CID   16606191.
  8. D. N. Dybtsev; H. Chun; S. H. Yoon; D. Kim; K. Kim (2004). "Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties". J. Am. Chem. Soc. 126 (1): 32–33. doi:10.1021/ja038678c. PMID   14709045.
  9. D. N. Dybtsev; H. Chun; K. Kim (2004). "Rigid and Flexible: A Highly Porous Metal-Organic Framework with Unusual Guest-Dependent Dynamic Behavior". Angew. Chem. Int. Ed. 43 (38): 5033–5036. doi:10.1002/anie.200460712. PMID   15384114.
  10. D. N. Dybtsev; A. L. Nuzhdin; H. Chun; K. P. Bryliakov; E. P. Talsi; V. P. Fedin; K. Kim (2006). "A Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity". Angew. Chem. Int. Ed. 45 (6): 916–920. doi:10.1002/anie.200503023. PMID   16385607.
  11. K. Kim; N. Selvapalam; Y. H. Ko; K. M. Park; D. Kim; J. Kim (2007). "Functionalized cucurbiturils and their applications". Chem. Soc. Rev. 36 (2): 267–279. doi:10.1039/b603088m. PMID   17264929.
  12. D. Kim; E. Kim; J. Kim; K. M. Park; K. Baek; M. Jung; Y. H. Ko; W. Sung; H. S. Kim; J. H. Suh; C. G. Park; O. S. Na; D.-k. Lee; K. E. Lee; S. S. Han; K. Kim (2007). "Direct Synthesis of Polymer Nanocapsules with a Noncovalently Tailorable Surface". Angew. Chem. Int. Ed. 46 (19): 3471–3474. doi:10.1002/anie.200604526. PMID   17221900. S2CID   7894440.
  13. M. Banerjee; S. Das; M. Yoon; H. J. Choi; M. H. Hyun; S. M. Park; G. Seo; K. Kim (2009). "Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials". J. Am. Chem. Soc. 131 (22): 7524–7525. doi:10.1021/ja901440g. PMID   19438178.
  14. S. Das; H. Kim; K. Kim (2009). "Metathesis in Single Crystal: Complete and Reversible Exchange of Metal Ions Constituting the Frameworks of Metal-Organic Frameworks". J. Am. Chem. Soc. 131 (11): 3814–3815. doi:10.1021/ja808995d. PMID   19256486.
  15. D.-W. Lee; K. M. Park; M. Banerjee; S. H. Ha; T. Lee; K. Suh; S. Paul; H. Jung; J. Kim; N. Selvapalam; S. H. Ryu; K. Kim (2011). "Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host–guest binding pair". Nature Chemistry. 3 (2): 154–159. Bibcode:2011NatCh...3..154L. doi:10.1038/nchem.928. PMID   21258389.
  16. "Looking Back". Nature. Retrieved 10 October 2018.
  17. 1 2 Lee, Suh-young (6 September 2011). "Prof. Kimoon Kim Wins the Izatt-Christensen Award". The Postech Times. POSTECH. Retrieved 11 February 2019.
  18. "Center for Self-assembly and Complexity - Chemistry - Research Centers". Institute for Basic Science. Retrieved 11 February 2019.
  19. "About CSC". Center for Self-assembly and Complexity. Institute for Basic Science. Retrieved 11 February 2019.
  20. Behrend, Robert (1905). "I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd". Justus Liebig's Annalen der Chemie. 339: 1–37. doi:10.1002/jlac.19053390102.
  21. Freeman, W. A.; Mock, W. L.; Shih, N. Y. (1981). "Cucurbituril". Journal of the American Chemical Society. 103 (24): 7367–7368. doi:10.1021/ja00414a070.
  22. Kim, Jaheon; Jung, In-Sun; Kim, Soo-Young; Lee, Eunsung; Kang, Jin-Koo; Sakamoto, Shigeru; Yamaguchi, Kentaro; Kim, Kimoon (2000). "New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril(n=5, 7, and 8)". Journal of the American Chemical Society . 122 (3): 540–541. doi:10.1021/ja993376p.
  23. Cheng, Xiao-Jie; et al. (2013). "Twisted Cucurbit[14]uril". Angewandte Chemie International Edition. 52 (28): 7252–7255. doi:10.1002/ange.201210267. PMID   23716359.
  24. 1 2 Kim, Kimoon (5 June 2018). Cucurbiturils: Chemistry, Supramolecular Chemistry and Applications. World Scientific. p. vii. ISBN   9781848164086.
  25. "ICCB 2009". ChemComm : 249–356. 21 January 2009. ISSN   1359-7345 . Retrieved 11 February 2019.
  26. Masson, Eric; Ling, Xiaoxi; Joseph, Roymon; Kyeremeh-Mensah, Lawrence; Lu, Xiaoyong (9 December 2011). "Cucurbituril chemistry: a tale of supramolecular success". RSC Advances . 2012 (2): 1213–1247. doi:10.1039/C1RA00768H . Retrieved 11 February 2019. These numerical data support Kim's wish expressed during the last evening of the 1st International Conference on Cucurbiturils (July 10–11, 2009)held at POSTECH in Pohang, Korea, that CB[n]s would be to the next decade what calixarenes have been to the previous one.
  27. 김, 하연 (28 August 2018). "포스텍 김기문 교수, 세계최초 쿠커비투릴 책 발간". Veritas-A (in Korean). Retrieved 11 February 2019.
  28. Mukhopadhyay, Rahul Dev; Kim, Younghoon; Koo, Jaehyoung; Kim, Kimoon (22 October 2018). "Porphyrin Boxes". Acc. Chem. Res. 51 (11): 2730–2738. doi:10.1021/acs.accounts.8b00302. PMID   30345738. S2CID   53044650.
  29. 1 2 Kim, Dongwoo; Kim, Eunju; Kim, Jeeyeon; Park, Kyeng Min; Baek, Kangkyun; Jung, Minseon; Ko, Young Ho; Sung, Wokyung; Kim, Hyung Seok; Suh, Ju Hyung; Park, Chan Gyung; Na, Oh Sung; Lee, Dong‐ki; Lee, Kyung Eun; Han, Sung Sik; Kim, Kimoon (27 April 2007). "Direct Synthesis of Polymer Nanocapsules with a Noncovalently Tailorable Surface". Angewandte Chemie. 46 (19): 3471–3474. doi:10.1002/anie.200604526. PMID   17221900. S2CID   7894440.
  30. Kim, Dongwoo; Kim, Eunju; Lee, Jiyeong; Hong, Soonsang; Sung, Wokyung; Lim, Namseok; Park, Chan Gyung; Kim, Kimoon (24 June 2010). "Direct Synthesis of Polymer Nanocapsules: Self-Assembly of Polymer Hollow Spheres through Irreversible Covalent Bond Formation". Journal of the American Chemical Society. 132 (28): 9908–9919. doi:10.1021/ja1039242. PMID   20572658. S2CID   207053581.
  31. Baek, Kangkyun; Yun, Gyeongwon; Kim, Youngkook; Kim, Dongwoo; Hota, Raghunandan; Hwang, Ilha; Xu, Dan; Ko, Young Ho; Gu, Gil Ho; Suh, Ju Hyung; Park, Chan Gyung; Sung, Bong June; Kim, Kimoon (2013). "Free-Standing, Single-Monomer-Thick Two-Dimensional Polymers through Covalent Self-Assembly in Solution". Journal of the American Chemical Society. 135 (17): 6523–6528. doi:10.1021/ja4002019. PMID   23574044. S2CID   31450212.
  32. Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon (5 January 2014). "Hollow nanotubular toroidal polymer microrings". Nature Chemistry. 6 (2): 97–103. Bibcode:2014NatCh...6...97L. doi:10.1038/nchem.1833. PMID   24451584.
  33. Kim, Eunju; Kim, Dongwoo; Jung, Hyuntae; Lee, Jiyeong; Paul, Somak; Selvapalam, Narayanan; Yang, Yosep; Lim, Namseok; Park, Chan Gyung; Kim, Kimoon (14 June 2010). "Facile, Template‐Free Synthesis of Stimuli‐Responsive Polymer Nanocapsules for Targeted Drug Delivery". Angewandte Chemie. 49 (26): 4405–4408. doi:10.1002/anie.201000818. PMID   20468019.
  34. Hota, Raghunandan; Baek, Kangkyun; Yun, Gyeongwon; Kim, Youngkook; Jung, Hyuntae; Park, Kyeng Min; Yoon, Eunjin; Joo, Taiha; Kang, Juseok; Park, Chan Gyung; Bae, Su Mi; Ahn, Woong Shick; Kim, Kimoon (9 October 2012). "Self-assembled, covalently linked, hollow phthalocyanine nanospheres". Chem. Sci. 4 (1): 339–344. doi:10.1039/C2SC21254D.
  35. Roy, Indranil; Shetty, Dinesh; Hota, Raghunandan; Baek, Kangkyun; Kim, Jeesu; Kim, Chulhong; Kappert, Sandro; Kim, Kimoon (7 December 2015). "A Multifunctional Subphthalocyanine Nanosphere for Targeting, Labeling, and Killing of Antibiotic‐Resistant Bacteria". Angewandte Chemie International Edition. 54 (50): 15152–15155. doi:10.1002/anie.201507140. PMID   26493283.
  36. Yun, Gyeongwon; Hassan, Zahid; Lee, Jiyeong; Kim, Jeehong; Lee, Nam‐Suk; Kim, Nam Hoon; Baek, Kangkyun; Hwang, Ilha; Park, Chan Gyung; Kim, Kimoon (16 June 2014). "Highly Stable, Water‐Dispersible Metal‐Nanoparticle‐Decorated Polymer Nanocapsules and Their Catalytic Applications". Angewandte Chemie. 53 (25): 6414–6418. doi:10.1002/anie.201403438. PMID   24842492.
  37. Baek, Kangkyun; Xu, Dan; Murray, James; Kim, Sungwan; Kim, Kimoon (6 July 2016). "Permselective 2D-polymer-based membrane tuneable by host–guest chemistry". Chemical Communications. 52 (62): 9676–9678. doi:10.1039/C6CC03616C. PMID   27400648.
  38. Baek, Kangkyun; Hwang, Ilha; Roy, Indranil; Shetty, Dinesh; Kim, Kimoon (17 April 2015). "Self-Assembly of Nanostructured Materials through Irreversible Covalent Bond Formation". Accounts of Chemical Research. 48 (8): 2221–2229. doi:10.1021/acs.accounts.5b00067. PMID   25884270.
  39. 이, 은지. "MK News - 김기문ㆍ이덕환ㆍ백경희 교수 등 10명 닮고싶은 과학자". 매일경제 (in Korean). Retrieved 8 February 2019.
  40. 김, 태균 (23 August 2006). "<고침> 경제("닮고 싶은 과기인에...")". Naver (in Korean). Yonhap . Retrieved 8 February 2019.
  41. "Prize winners-By years". The Ho-Am Prize. Samsung Foundation. Retrieved 1 February 2019.
  42. 오, 철우 (20 April 2008). "김기문ㆍ최양도 교수 등 과학기술인상". Hani (in Korean). Retrieved 8 February 2019.
  43. 박, 근태 (20 April 2008). "2008최고과학기술인상, 김기문 민계식 최양도 송호영". DongA (in Korean). Retrieved 8 February 2019.
  44. "10년 뒤 한국을 빛낼 100인". The Dong-a Ilbo (in Korean). 2011. Retrieved 27 February 2020.
  45. "Endowed Lectureships". College of Chemistry. UC Berkeley. Retrieved 8 February 2019.
  46. "Плюс четыре". Сибирское отделение Российской академии наук (Siberian Branch of the Russian Academy of Sciences) (in Russian). 20 April 2012. Retrieved 8 February 2019.
  47. "Почётными докторами СО РАН стали кореец и европеец". Сибирское отделение Российской академии наук (Siberian Branch of the Russian Academy of Sciences) (in Russian). 10 December 2012. Retrieved 8 February 2019.
  48. "Izatt-Christensen Award Recipients". Chemistry and Biochemistry. Brigham Young University. Archived from the original on 7 November 2019. Retrieved 1 February 2019.
  49. 박, 동혁 (5 December 2014). "포스텍 김기문·이인범 교수 '지식창조대상'". 경복매일 (in Korean). Retrieved 8 February 2019.
  50. 강, 진구 (28 December 2014). "포스텍 김기문·이인범 교수, 지식창조대상 수상". Newsis (in Korean). Retrieved 8 February 2019.
  51. 1 2 "Izatt–Christensen Award: K. Kim / Cram Lehn Pedersen Prize: J. Nitschke / Breyer Medal: J. Wang". Angewandte Chemie . 51 (21): 5038. 24 April 2012. doi:10.1002/anie.201202815.