Kristy M. Ainslie

Last updated
Kristy M. Ainslie
CitizenshipUSA
Alma mater Pennsylvania State University, Michigan State University
Scientific career
Fields Engineering, Pharmacy
Doctoral advisor John Tarbell, Michael Pishko
Website ainslielab.web.unc.edu

Kristy M. Ainslie is a Fred Eshelman Distinguished Professor in pharmaceutical science at University of North Carolina at Chapel Hill in the Eshelman School of Pharmacy and chair of the Division of Pharmacoengineering and Molecular Pharmaceutics. She is also joint in the UNC School of Medicine Department of Microbiology and Immunology and affiliated faculty in the UNC/NC State joint Biomedical Engineering department. Additionally, she is part of UNC's Biological and Biomedical Sciences Program (BBSP).

Contents

Background

Ainslie completed her Bachelor of Science in chemical engineering from Michigan State University in 1999. After working as an environmental engineer at Malcolm Pirnie, she began graduate school at Penn State as a fellow in the Huck Institutes of the Life Science. In 2003, she completed her Master of Science in chemical engineering under John Tarbell, focusing on shear stress modulation of vascular smooth muscle cell contraction. [1] [2] [3] [4] [5] Two years later in 2005, she completed her PhD in Chemical engineering under Micheal Pishko, focusing on protein adhesion and cell responses to nanomaterials. [6] [7] [8] [9] [10] After a brief post doc at the microcantilever start-up Protiveris, she worked with Lloyd Whitman at the United States Naval Research Laboratory. [11] In 2006, she began a post doc at University of San Francisco in the department of bioengineering and therapeutic sciences under the direction of Tejal Desai. The focus of Ainslie's research at UCSF was on microfabricated oral drug delivery [12] [13] carriers and immune responses to planar nanomaterials. [14] [15]

Ainslie began her career as a tenure-track assistant professor at Ohio State University in the school of pharmacy in the division of pharmaceutics and pharmaceutical chemistry. In 2014, Ainslie moved to the University of North Carolina at Chapel Hill and the UNC Eshelman School of Pharmacy division of pharmacoengineering and molecular pharmaceutics as an associate professor.

Career

Ainslie has several areas of focus for her lab:

Related Research Articles

<span class="mw-page-title-main">DNA vaccine</span> Vaccine containing DNA

A DNA vaccine is a type of vaccine that transfects a specific antigen-coding DNA sequence into the cells of an organism as a mechanism to induce an immune response.

<span class="mw-page-title-main">Liposome</span> Composite structures made of phospholipids and may contain small amounts of other molecules

A liposome is a small artificial vesicle, spherical in shape, having at least one lipid bilayer. Due to their hydrophobicity and/or hydrophilicity, biocompatibility, particle size and many other properties, liposomes can be used as drug delivery vehicles for administration of pharmaceutical drugs and nutrients, such as lipid nanoparticles in mRNA vaccines, and DNA vaccines. Liposomes can be prepared by disrupting biological membranes.

<span class="mw-page-title-main">Dextran</span> Chemical compound

Dextran is a complex branched glucan, originally derived from wine. IUPAC defines dextrans as "Branched poly-α-d-glucosides of microbial origin having glycosidic bonds predominantly C-1 → C-6". Dextran chains are of varying lengths.

<span class="mw-page-title-main">Dendrimer</span> Highly ordered, branched polymeric molecule

Dendrimers are highly ordered, branched polymeric molecules. Synonymous terms for dendrimer include arborols and cascade molecules. Typically, dendrimers are symmetric about the core, and often adopt a spherical three-dimensional morphology. The word dendron is also encountered frequently. A dendron usually contains a single chemically addressable group called the focal point or core. The difference between dendrons and dendrimers is illustrated in the top figure, but the terms are typically encountered interchangeably.

Virus-like particles (VLPs) are molecules that closely resemble viruses, but are non-infectious because they contain no viral genetic material. They can be naturally occurring or synthesized through the individual expression of viral structural proteins, which can then self assemble into the virus-like structure. Combinations of structural capsid proteins from different viruses can be used to create recombinant VLPs. Both in-vivo assembly and in-vitro assembly have been successfully shown to form virus-like particles. VLPs derived from the Hepatitis B virus (HBV) and composed of the small HBV derived surface antigen (HBsAg) were described in 1968 from patient sera. VLPs have been produced from components of a wide variety of virus families including Parvoviridae, Retroviridae, Flaviviridae, Paramyxoviridae and bacteriophages. VLPs can be produced in multiple cell culture systems including bacteria, mammalian cell lines, insect cell lines, yeast and plant cells.

The name electrospray is used for an apparatus that employs electricity to disperse a liquid or for the fine aerosol resulting from this process. High voltage is applied to a liquid supplied through an emitter. Ideally the liquid reaching the emitter tip forms a Taylor cone, which emits a liquid jet through its apex. Varicose waves on the surface of the jet lead to the formation of small and highly charged liquid droplets, which are radially dispersed due to Coulomb repulsion.

<span class="mw-page-title-main">Visceral leishmaniasis</span> Human disease caused by protist parasites

Visceral leishmaniasis (VL), also known as kala-azar or "black fever", is the most severe form of leishmaniasis and, without proper diagnosis and treatment, is associated with high fatality. Leishmaniasis is a disease caused by protozoan parasites of the genus Leishmania.

<span class="mw-page-title-main">Gene delivery</span> Introduction of foreign genetic material into host cells

Gene delivery is the process of introducing foreign genetic material, such as DNA or RNA, into host cells. Gene delivery must reach the genome of the host cell to induce gene expression. Successful gene delivery requires the foreign gene delivery to remain stable within the host cell and can either integrate into the genome or replicate independently of it. This requires foreign DNA to be synthesized as part of a vector, which is designed to enter the desired host cell and deliver the transgene to that cell's genome. Vectors utilized as the method for gene delivery can be divided into two categories, recombinant viruses and synthetic vectors.

In immunology, an adjuvant is a substance that increases or modulates the immune response to a vaccine. The word "adjuvant" comes from the Latin word adiuvare, meaning to help or aid. "An immunologic adjuvant is defined as any substance that acts to accelerate, prolong, or enhance antigen-specific immune responses when used in combination with specific vaccine antigens."

Biomagnetics is a field of biotechnology. It has actively been researched since at least 2004. Although the majority of structures found in living organisms are diamagnetic, the magnetic field itself, as well as magnetic nanoparticles, microstructures and paramagnetic molecules can influence specific physiological functions of organisms under certain conditions. The effect of magnetic fields on biosystems is a topic of research that falls under the biomagnetic umbrella, as well as the construction of magnetic structures or systems that are either biocompatible, biodegradable or biomimetic. Magnetic nanoparticles and magnetic microparticles are known to interact with certain prokaryotes and certain eukaryotes.

<span class="mw-page-title-main">Laser ablation electrospray ionization</span>

Laser ablation electrospray ionization (LAESI) is an ambient ionization method for mass spectrometry that combines laser ablation from a mid-infrared (mid-IR) laser with a secondary electrospray ionization (ESI) process. The mid-IR laser is used to generate gas phase particles which are then ionized through interactions with charged droplets from the ESI source. LAESI was developed in Professor Akos Vertes lab by Peter Nemes in 2007 and it was marketed commercially by Protea Biosciences, Inc until 2017. Fiber-LAESI for single-cell analysis approach was developed by Bindesh Shrestha in Professor Vertes lab in 2009. LAESI is a novel ionization source for mass spectrometry (MS) that has been used to perform MS imaging of plants, tissues, cell pellets, and even single cells. In addition, LAESI has been used to analyze historic documents and untreated biofluids such as urine and blood. The technique of LAESI is performed at atmospheric pressure and therefore overcomes many of the obstacles of traditional MS techniques, including extensive and invasive sample preparation steps and the use of high vacuum. Because molecules and aerosols are ionized by interacting with an electrospray plume, LAESI's ionization mechanism is similar to SESI and EESI techniques.

<span class="mw-page-title-main">OSU-03012</span> Chemical compound

OSU-03012 (AR-12) is a celecoxib derivative with anticancer and anti-microbial activity. Unlike celecoxib, OSU-03012 does not inhibit COX, but inhibits several other important enzymes instead which may be useful in the treatment of some forms of cancer, When combined with PDE5 inhibitors such as sildenafil or tadalafil, OSU-03012 was found to show enhanced anti-tumour effects in cell culture.

Droplet-based microfluidics manipulate discrete volumes of fluids in immiscible phases with low Reynolds number and laminar flow regimes. Interest in droplet-based microfluidics systems has been growing substantially in past decades. Microdroplets offer the feasibility of handling miniature volumes of fluids conveniently, provide better mixing, encapsulation, sorting, sensing and are suitable for high throughput experiments. Two immiscible phases used for the droplet based systems are referred to as the continuous phase and dispersed phase.

<span class="mw-page-title-main">Acetalated dextran</span> Chemical compound

Acetalated dextran is a biodegradable polymer based on dextran that has acetal modified hydroxyl groups. After synthesis, the hydrophilic polysaccharide dextran is rendered insoluble in water, but soluble in organic solvents. This allows it to be processed in the same manner as many polyesters, like poly(lactic-co-glycolic acid), through processes like solvent evaporation and emulsion. Acetalated dextran is structurally different from acetylated dextran.

Host-directed therapeutics, also called host targeted therapeutics, act via a host-mediated response to pathogens rather than acting directly on the pathogen, like traditional antibiotics. They can change the local environment in which the pathogen exists to make it less favorable for the pathogen to live and/or grow. With these therapies, pathogen killing, e.g.bactericidal effects, will likely only occur when it is co-delivered with a traditional agent that acts directly on the pathogen, such as an antibiotic, antifungal, or antiparasitic agent. Several antiviral agents are host-directed therapeutics, and simply slow the virus progression rather than kill the virus. Host-directed therapeutics may limit pathogen proliferation, e.g., have bacteriostatic effects. Certain agents also have the ability to reduce bacterial load by enhancing host cell responses even in the absence of traditional antimicrobial agents.

mRNA vaccine Type of vaccine

An mRNAvaccine is a type of vaccine that uses a copy of a molecule called messenger RNA (mRNA) to produce an immune response. The vaccine delivers molecules of antigen-encoding mRNA into immune cells, which use the designed mRNA as a blueprint to build foreign protein that would normally be produced by a pathogen or by a cancer cell. These protein molecules stimulate an adaptive immune response that teaches the body to identify and destroy the corresponding pathogen or cancer cells. The mRNA is delivered by a co-formulation of the RNA encapsulated in lipid nanoparticles that protect the RNA strands and help their absorption into the cells.

<span class="mw-page-title-main">Dextran drug delivery systems</span> Polymeric drug carrier

Dextran drug delivery systems involve the use of the natural glucose polymer dextran in applications as a prodrug, nanoparticle, microsphere, micelle, and hydrogel drug carrier in the field of targeted and controlled drug delivery. According to several in vitro and animal research studies, dextran carriers reduce off-site toxicity and improve local drug concentration at the target tissue site. This technology has significant implications as a potential strategy for delivering therapeutics to treat cancer, cardiovascular diseases, pulmonary diseases, bone diseases, liver diseases, colonic diseases, infections, and HIV.

Protein nanotechnology is a burgeoning field of research that integrates the diverse physicochemical properties of proteins with nanoscale technology. This field assimilated into pharmaceutical research to give rise to a new classification of nanoparticles termed protein nanoparticles (PNPs). PNPs garnered significant interest due to their favorable pharmacokinetic properties such as high biocompatibility, biodegradability, and low toxicity Together, these characteristics have the potential to overcome the challenges encountered with synthetic NPs drug delivery strategies. These existing challenges including low bioavailability, a slow excretion rate, high toxicity, and a costly manufacturing process, will open the door to considerable therapeutic advancements within oncology, theranostics, and clinical translational research.

<span class="mw-page-title-main">Intracellular delivery</span> Scientific research area

Intracellular delivery is the process of introducing external materials into living cells. Materials that are delivered into cells include nucleic acids, proteins, peptides, impermeable small molecules, synthetic nanomaterials, organelles, and micron-scale tracers, devices and objects. Such molecules and materials can be used to investigate cellular behavior, engineer cell operations or correct a pathological function.

Darrick Carter is an American biochemist/biophysicist, inventor, and entrepreneur. He is known for developing various therapeutics and vaccines, such as saRNA COVID-19 vaccine, influenza vaccine, and tuberculosis vaccine. Currently, he is the CEO of Compliment Corporation, and PAI Life Sciences Incorporated, as well as Founder of HDT Bio Corporation. He also holds two affiliate Professorships at the University of Washington in the Schools of Medicine and in Global Health.

References

  1. Sharma, Ritu; Yellowley, Claire; Civelek, Mete; Ainslie, Kristy; Hodgson, Louis; Tarbell, John; Donahue, Hennry (2002). "Intracellular Calcium Changes in Rat Aortic Smooth Muscle Cells in Response to Fluid Flow". Annals of Biomedical Engineering. 30 (3): 371–8. doi:10.1114/1.1470179. PMC   4472337 . PMID   12051621.
  2. Civelek, Mete; Ainslie, Kristy; Garanich, Jeffery; Tarbell, John (2002). "Smooth muscle cells contract in response to fluid flow via a Ca2+-independent signaling mechanism". J Appl Physiol. 93 (6): 1907–17. CiteSeerX   10.1.1.490.2931 . doi:10.1152/japplphysiol.00988.2001. PMID   12391063. S2CID   6734621.
  3. Florian, Jeffery; Kosky, Jason; Ainslie, Kristy; Pang, Zhang; Dull, Randall; Tarbell, John (2003). "Heparan sulfate proteoglycan is a mechanosensor on endothelial cells". Circulation. 93 (10): e136–42. doi: 10.1161/01.RES.0000101744.47866.D5 . PMID   14563712.
  4. Ainslie, Kristy; Shi, Z; Garanich, Jeffery; Tarbell, John (2004). "Rat aortic smooth muscle cells contract in response to serum and its components in a calcium independent manner". Annals of Biomedical Engineering. 32 (12): 1667–75. doi:10.1007/s10439-004-7820-7. PMID   15675680. S2CID   12752100.
  5. Ainslie, Kristy; Garanich, Jeffery; Dull, Randall; Tarbell, John (2005). "Vascular smooth muscle cell glycocalyx influences shear stress-mediated contractile response". J Appl Physiol. 98 (1): 242–9. doi:10.1152/japplphysiol.01006.2003. PMID   15322072. S2CID   19602119.
  6. Dyer, Maureen; Ainslie, Kristy; Pishko, Micheal (2007). "Protein adhesion on silicon-supported hyperbranched poly(ethylene glycol) and poly(allylamine) thin films". Langmuir. 23 (13): 7018–23. doi:10.1021/la7004997. PMID   17506587.
  7. Ainslie, Kristy; Sharma, Gurav; Dyer, Maureen; Grimes, Craig; Pishko, Micheal (2005). "Attenuation of protein adsorption on static and oscillating magnetostrictive nanowires". Nano Letters. 5 (9): 1852–6. Bibcode:2005NanoL...5.1852A. doi:10.1021/nl051117u. PMID   16159237.
  8. Ainslie, Kristy; Bachelder, Eric; Borka, Sachin; Zahr, Alisar; Sen, Ayusman; Badding, John; Pishko, Micheal (2007). "Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE)". Langmuir. 23 (2): 747–54. doi:10.1021/la060948s. PMID   17209629.
  9. Kristy, Ainslie; Bachelder, Eric; Sharma, Gurav; Grimes, Craig; Pishko, Micheal (2009). "Macrophage cell adhesion and inflammation cytokines on magnetostrictive nanowires". Nanotoxicology. 1 (4): 279. doi:10.1080/17435390701781142. S2CID   85936269.
  10. Bachelder, Eric; Ainslie, Kristy; Pishko, Micheal (2005). "Utilizing a quartz crystal microbalance for quantifying CD4+ T cell counts". Sensor Letters. 3 (3): 211. doi:10.1166/sl.2005.029.
  11. Stine, Rory; Cole, Christina; Ainslie, Kristy; Mulvaney, Shawn; Whitman, Lloyd (2007). "Formation of primary amines on silicon nitride surfaces: a direct, plasma-based pathway to functionalization". Langmuir. 23 (8): 4400–4. doi:10.1021/la0635653. PMID   17323989.
  12. Ainslie, Kristy; Kraning, Casey; Desai, Tejal (2008). "Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics". Lab Chip. 8 (7): 1042–7. doi:10.1039/b800604k. PMC   2969854 . PMID   18584077.
  13. Ainslie, Kristy; Lowe, Rachel; Beaudette, Tristan; Petty, Lamar; Bachelder, Eric; Desai, Tejal (2009). "Microfabricated devices for enhanced bioadhesive drug delivery: attachment to and small-molecule release through a cell monolayer under flow". Small. 5 (24): 2857–63. doi: 10.1002/smll.200901254 . PMID   19787677.
  14. Kristy, Ainslie; Tao, Sarah; Popat, Ketul; Daniels, Hugh; Hardev, Veeral; Grimes, Craig; Desai, Tejal (2009). "In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone". J Biomed Mater Res A. 91 (3): 647–55. doi: 10.1002/jbm.a.32262 . PMID   18988278.
  15. Ainslie, Kristy; Tao, Sarah; Popat, Ketul; Desai, Tejal (2008). "In vitro immunogenicity of silicon-based micro- and nanostructured surfaces". ACS Nano. 2 (5): 1076–84. doi:10.1021/nn800071k. PMID   19206506.
  16. Kauffman, KJ; Do, C; Sharma, S; Gallovic, MD; Bachelder, EM; Ainslie, KM (Aug 2012). "Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product". ACS Appl Mater Interfaces. 4 (8): 4149–55. doi:10.1021/am3008888. hdl: 1811/86186 . PMID   22833690.
  17. Bachelder, EM; Beaudette, TT; Broaders, KE; Dashe, J; Fréchet, JM (Aug 2008). "Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications". Journal of the American Chemical Society. 130 (32): 10494–5. doi:10.1021/ja803947s. PMC   2673804 . PMID   18630909.
  18. Frechet, JM; Bachelder, EM; Beaudette, TT; Broaders, KE. "Acid-Degradable and Bioerodible Modified Polyhydroxylated Materials". Google Patent. Archived from the original on 2017-08-07. Retrieved 2018-06-26.
  19. Chen, Naihan; Johnson, Monica; Collier, Micheal; Gallovic, Matthew; Johnson, Monica; Ainslie, Kristy (2018). "Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses". Journal of Controlled Release. 273: 147–159. doi:10.1016/j.jconrel.2018.01.027. PMC   5835201 . PMID   29407676.
  20. Ainslie, Kristy. "Encapsulated Active Vitamin D Vaccine for the Treatment of Multiple Sclerosis". Grantome. Archived from the original on 15 October 2019. Retrieved 15 October 2019.
  21. Collier, MA; Peine, KJ; Gautum, S; Oghumu, S; Varikuti, S; Borteh, H; Papenfuss, TL; Satoskar, AR; Bachelder, EM; Ainslie, KM (Feb 29, 2016). "Host-mediated Leishmania donovani treatment using AR-12 encapsulated in acetalated dextran microparticles". International Journal of Pharmaceutics. 499 (1–2): 186–94. doi:10.1016/j.ijpharm.2016.01.004. PMC   5730989 . PMID   26768723.
  22. Ainslie; et al. "COMPOSITIONS AND METHODS FOR INHIBITING LEISHMANIA". Free Patents Online. Archived from the original on 2018-06-27. Retrieved 2018-06-26.
  23. Hoang, KV; Borteh, HM; Rajaram, MV; Peine, KJ; Curry, H; Collier, MA; Homsy, ML; Bachelder, EM; Gunn, JS; Schlesinger, LS; Ainslie, KM (Dec 2014). "Acetalated dextran encapsulated AR-12 as a host-directed therapy to control Salmonella infection". Int J Pharm. 477 (1–2): 334–43. doi:10.1016/j.ijpharm.2014.10.022. PMC   4267924 . PMID   25447826.
  24. Hoang, KV; Curry, H; Collier, MA; Borteh, H; Bachelder, EM; Schlesinger, LS; Gunn, JS; Ainslie, KM (Mar 25, 2016). "Needle-Free Delivery of Acetalated Dextran-Encapsulated AR-12 Protects Mice from Francisella tularensis Lethal Challenge". Antimicrob Agents Chemother. 60 (4): 2052–62. doi:10.1128/AAC.02228-15. PMC   4808193 . PMID   26787696.
  25. Gallovic, Matthew; Schully, Kevin; Bell, Matthew; Elberson, Margret; Palmer, John; Darko, Christen; Bachelder, Eric; Keane-Myers, Andrea; Ainslie, Kristy (2016). "Acetalated Dextran Microparticulate Vaccine Formulated via Coaxial Electrospray Preserves Toxin Neutralization and Enhances Murine Survival Following Inhalational Bacillus Anthracis Exposure". Advanced Healthcare Materials. 5 (20): 2617–2627. doi:10.1002/adhm.201600642. PMID   27594343. S2CID   42823279.
  26. Junkins, Robert; Gallovic, Matthew; Johnson, Brandon; Collier, Micheal; Watkins-Schulz, Rebekah; Cheng, Ning; David, Clement; McGee, Charles; Sempowski, Greg; Shterev, Ivo; McKinnon, Karen; Bachelder, Eric; Ainslie, Kristy; Ting, Jenny (2018). "A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination". J Control Release. 270: 1–13. doi:10.1016/j.jconrel.2017.11.030. PMC   5808851 . PMID   29170142.
  27. Graham-Gurysh, Elizabeth; Moore, Kathryn; Satterlee, Andrew; Sheetz, Kevin; Lin; Bachelder, Eric; Miller, C. Ryan; Hingtgen, Shawn; Ainslie, Kristy (2018). "Sustained Delivery of Doxorubicin via Acetalated Dextran Scaffold Prevents Glioblastoma Recurrence after Surgical Resection". Mol Pharm. 15 (3): 1309–1318. doi:10.1021/acs.molpharmaceut.7b01114. PMC   5999333 . PMID   29342360.