Acetalated dextran

Last updated
Acetalated dextran
Acetalated dextran.png
Names
IUPAC name
varies
Other names
Ac-DEX, Ace-DEX, modified dextran
Identifiers
ChemSpider
  • none
Properties
Molar mass varies
Appearancewhite powder
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Acetalated dextran is a biodegradable polymer based on dextran that has acetal modified hydroxyl groups. After synthesis, the hydrophilic polysaccharide dextran is rendered insoluble in water, but soluble in organic solvents. This allows it to be processed in the same manner as many polyesters, like poly(lactic-co-glycolic acid), through processes like solvent evaporation and emulsion. [1] Acetalated dextran is structurally different from acetylated dextran.

Contents

History

Acetalated dextran was first reported in 2008 out of the lab of Jean Fréchet at the University of California, Berkeley in the College of Chemistry. [2] [3] This version of acetalated dextran, often abbreviated Ac-DEX, has dextran and exceedingly low levels of acetone and methanol as degradation products. In 2012, in the laboratory of Kristy Ainslie, at Ohio State University in the College of Pharmacy, polymer synthesis was modified to release ethanol in place of methanol upon degradation. [4] The ethanol producing version of acetalated dextran is often abbreviated Ace-DEX.

Properties

Cyclic and acyclic acetals on acetalated dextran which degrades to dextran, acetone, and ethanol. Cyclic acyclic acetals.png
Cyclic and acyclic acetals on acetalated dextran which degrades to dextran, acetone, and ethanol.

During the synthesis of acetalated dextran both acyclic and cyclic acetals are formed. The acyclic acetals degrade into an acetone and an alcohol, whereas cyclic acetals degrade into acetone. The ratio of cyclic to acyclic acetals varies with reaction time since acyclic acetals are kinetically favored and cyclic acetals are the thermodynamically favored. [5] This unique formation of cyclic and acyclic acetals leads to varying degradation time because the two acetal groups hydrolyze at different rates. Acetalated dextran's degradation time can vary from hours to a month or more at pH 7.2. [4] [5] [6] Also, acetalated dextran is unique because it is acid sensitive. Therefore, at lower pH acetalated dextran degrades more rapidly, which results in a polymer that degrades approximately two logs faster at pH 5 compared to pH 7. The acid-sensitivity of Ac-DEX has illustrated, when formulated into nanoparticles encapsulating a protein antigen, more efficient presentation of antigen to both MHC class I and MHC class II, over other non-acid sensitive polymers like PLGA and non degradable materials like gold nanoparticles. [5]

Applications

Because of the ability of acetalated dextran to degrade more rapidly in low pH environments like the phagolysosome of a macrophage or dendritic cell, it has been used as polymeric micro/nanoparticles. Acetalated dextran was originally developed as a vaccine carrier, but has been used for drug delivery, tissue engineering and infectious disease vaccine delivery. [1] Its unique degradation rates have led to finely tuned release of therapeutic proteins [7] and vaccine elements. [8] [9]

Ac-DEX has also been shown the allow proteins to be stored outside the cold chain. [10]

Related Research Articles

In polymer chemistry, ring-opening polymerization (ROP) is a form of chain-growth polymerization in which the terminus of a polymer chain attacks cyclic monomers to form a longer polymer. The reactive center can be radical, anionic or cationic. Some cyclic monomers such as norbornene or cyclooctadiene can be polymerized to high molecular weight polymers by using metal catalysts. ROP is a versatile method for the synthesis of biopolymers.

<span class="mw-page-title-main">Protecting group</span> Group of atoms introduced into a compound to prevent subsequent reactions

A protecting group or protective group is introduced into a molecule by chemical modification of a functional group to obtain chemoselectivity in a subsequent chemical reaction. It plays an important role in multistep organic synthesis.

<span class="mw-page-title-main">Dextran</span> Chemical compound

Dextran is a complex branched glucan, originally derived from wine. IUPAC defines dextrans as "Branched poly-α-d-glucosides of microbial origin having glycosidic bonds predominantly C-1 → C-6". Dextran chains are of varying lengths.

<span class="mw-page-title-main">Dendrimer</span> Highly ordered, branched polymeric molecule

Dendrimers are highly ordered, branched polymeric molecules. Synonymous terms for dendrimer include arborols and cascade molecules. Typically, dendrimers are symmetric about the core, and often adopt a spherical three-dimensional morphology. The word dendron is also encountered frequently. A dendron usually contains a single chemically addressable group called the focal point or core. The difference between dendrons and dendrimers is illustrated in the top figure, but the terms are typically encountered interchangeably.

A tetrahedral intermediate is a reaction intermediate in which the bond arrangement around an initially double-bonded carbon atom has been transformed from trigonal to tetrahedral. Tetrahedral intermediates result from nucleophilic addition to a carbonyl group. The stability of tetrahedral intermediate depends on the ability of the groups attached to the new tetrahedral carbon atom to leave with the negative charge. Tetrahedral intermediates are very significant in organic syntheses and biological systems as a key intermediate in esterification, transesterification, ester hydrolysis, formation and hydrolysis of amides and peptides, hydride reductions, and other chemical reactions.

<span class="mw-page-title-main">PLGA</span> Copolymer of varying ratios of polylactic acid and polyglycolic acid

PLGA, PLG, or poly(lactic-co-glycolic acid) is a copolymer which is used in a host of Food and Drug Administration (FDA) approved therapeutic devices, owing to its biodegradability and biocompatibility. PLGA is synthesized by means of ring-opening co-polymerization of two different monomers, the cyclic dimers (1,4-dioxane-2,5-diones) of glycolic acid and lactic acid. Polymers can be synthesized as either random or block copolymers thereby imparting additional polymer properties. Common catalysts used in the preparation of this polymer include tin(II) 2-ethylhexanoate, tin(II) alkoxides, or aluminum isopropoxide. During polymerization, successive monomeric units are linked together in PLGA by ester linkages, thus yielding a linear, aliphatic polyester as a product.

The Rubottom oxidation is a useful, high-yielding chemical reaction between silyl enol ethers and peroxyacids to give the corresponding α-hydroxy carbonyl product. The mechanism of the reaction was proposed in its original disclosure by A.G. Brook with further evidence later supplied by George M. Rubottom. After a Prilezhaev-type oxidation of the silyl enol ether with the peroxyacid to form the siloxy oxirane intermediate, acid-catalyzed ring-opening yields an oxocarbenium ion. This intermediate then participates in a 1,4-silyl migration to give an α-siloxy carbonyl derivative that can be readily converted to the α-hydroxy carbonyl compound in the presence of acid, base, or a fluoride source.

Acyclic diene metathesis or 'ADMET' is a special type of olefin metathesis used to polymerize terminal dienes to polyenes:

A nanogel is a polymer-based, crosslinked hydrogel particle on the sub-micron scale. These complex networks of polymers present a unique opportunity in the field of drug delivery at the intersection of nanoparticles and hydrogel synthesis. Nanogels can be natural, synthetic, or a combination of the two and have a high degree of tunability in terms of their size, shape, surface functionalization, and degradation mechanisms. Given these inherent characteristics in addition to their biocompatibility and capacity to encapsulate small drugs and molecules, nanogels are a promising strategy to treat disease and dysfunction by serving as delivery vehicles capable of navigating across challenging physiological barriers within the body. 

<span class="mw-page-title-main">Nanodiamond</span> Extremely small diamonds used for their thermal, mechanical and optoelectronic properties

Nanodiamonds, or diamond nanoparticles, are diamonds with a size below 100 nanometers. They can be produced by impact events such as an explosion or meteoritic impacts. Because of their inexpensive, large-scale synthesis, potential for surface functionalization, and high biocompatibility, nanodiamonds are widely investigated as a potential material in biological and electronic applications and quantum engineering.

<span class="mw-page-title-main">OSU-03012</span> Chemical compound

OSU-03012 (AR-12) is a celecoxib derivative with anticancer and anti-microbial activity. Unlike celecoxib, OSU-03012 does not inhibit COX, but inhibits several other important enzymes instead which may be useful in the treatment of some forms of cancer, When combined with PDE5 inhibitors such as sildenafil or tadalafil, OSU-03012 was found to show enhanced anti-tumour effects in cell culture.

Polyorthoesters are polymers with the general structure –[–R–O–C(R1, OR2)–O–R3–]n– whereas the residue R2 can also be part of a heterocyclic ring with the residue R. Polyorthoesters are formed by transesterification of orthoesters with diols or by polyaddition between a diol and a diketene acetal, such as 3,9-diethylidene-2,4,8,10-tetraoxaspiro[5.5]undecane.

Kristy M. Ainslie is a Fred Eshelman Distinguished Professor in pharmaceutical science at University of North Carolina at Chapel Hill in the Eshelman School of Pharmacy and chair of the Division of Pharmacoengineering and Molecular Pharmaceutics. She is also joint in the UNC School of Medicine Department of Microbiology and Immunology and affiliated faculty in the UNC/NC State joint Biomedical Engineering department. Additionally, she is part of UNC's Biological and Biomedical Sciences Program (BBSP).

<span class="mw-page-title-main">Macromolecular cages</span>

Macromolecular cages have three dimensional chambers surrounded by a molecular framework. Macromolecular cage architectures come in various sizes ranging from 1-50 nm and have varying topologies as well as functions. They can be synthesized through covalent bonding or self-assembly through non-covalent interactions. Most macromolecular cages that are formed through self-assembly are sensitive to pH, temperature, and solvent polarity.

<span class="mw-page-title-main">Heather Maynard</span> American chemist

Heather D. Maynard is the Dr Myung Ki Hong Professor in Polymer Science at the University of California, Los Angeles. She works on protein-polymer conjugates and polymeric drugs. Maynard is a Fellow of the Royal Society of Chemistry and the American Association for the Advancement of Science.

<span class="mw-page-title-main">Polymer-protein hybrid</span> Nanostructures of protein-polymer conjugates

Polymer-protein hybrids are a class of nanostructure composed of protein-polymer conjugates. The protein component generally gives the advantages of biocompatibility and biodegradability, as many proteins are produced naturally by the body and are therefore well tolerated and metabolized. Although proteins are used as targeted therapy drugs, the main limitations—the lack of stability and insufficient circulation times still remain. Therefore, protein-polymer conjugates have been investigated to further enhance pharmacologic behavior and stability. By adjusting the chemical structure of the protein-polymer conjugates, polymer-protein particles with unique structures and functions, such as stimulus responsiveness, enrichment in specific tissue types, and enzyme activity, can be synthesized. Polymer-protein particles have been the focus of much research recently because they possess potential uses including bioseparations, imaging, biosensing, gene and drug delivery.

<span class="mw-page-title-main">Dextran drug delivery systems</span> Polymeric drug carrier

Dextran drug delivery systems involve the use of the natural glucose polymer dextran in applications as a prodrug, nanoparticle, microsphere, micelle, and hydrogel drug carrier in the field of targeted and controlled drug delivery. According to several in vitro and animal research studies, dextran carriers reduce off-site toxicity and improve local drug concentration at the target tissue site. This technology has significant implications as a potential strategy for delivering therapeutics to treat cancer, cardiovascular diseases, pulmonary diseases, bone diseases, liver diseases, colonic diseases, infections, and HIV.

Chitosan-poly is a composite that has been increasingly used to create chitosan-poly(acrylic acid) nanoparticles. More recently, various composite forms have come out with poly(acrylic acid) being synthesized with chitosan which is often used in a variety of drug delivery processes. Chitosan which already features strong biodegradability and biocompatibility nature can be merged with polyacrylic acid to create hybrid nanoparticles that allow for greater adhesion qualities as well as promote the biocompatibility and homeostasis nature of chitosan poly(acrylic acid) complex. The synthesis of this material is essential in various applications and can allow for the creation of nanoparticles to facilitate a variety of dispersal and release behaviors and its ability to encapsulate a multitude of various drugs and particles.

Protein nanotechnology is a burgeoning field of research that integrates the diverse physicochemical properties of proteins with nanoscale technology. This field assimilated into pharmaceutical research to give rise to a new classification of nanoparticles termed protein nanoparticles (PNPs). PNPs garnered significant interest due to their favorable pharmacokinetic properties such as high biocompatibility, biodegradability, and low toxicity Together, these characteristics have the potential to overcome the challenges encountered with synthetic NPs drug delivery strategies. These existing challenges including low bioavailability, a slow excretion rate, high toxicity, and a costly manufacturing process, will open the door to considerable therapeutic advancements within oncology, theranostics, and clinical translational research.

<span class="mw-page-title-main">Intracellular delivery</span> Scientific research area

Intracellular delivery is the process of introducing external materials into living cells. Materials that are delivered into cells include nucleic acids, proteins, peptides, impermeable small molecules, synthetic nanomaterials, organelles, and micron-scale tracers, devices and objects. Such molecules and materials can be used to investigate cellular behavior, engineer cell operations or correct a pathological function.

References

  1. 1 2 Bachelder, EM; Pino, EN; Ainslie, KM (Feb 2017). "Acetalated Dextran: A Tunable and Acid-Labile Biopolymer with Facile Synthesis and a Range of Applications". Chem Rev. 117 (3): 1915–1926. doi:10.1021/acs.chemrev.6b00532. PMID   28032507.
  2. Bachelder, EM; Beaudette, TT; Broaders, KE; Dashe, J; Fréchet, JM (Aug 2008). "Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications". Journal of the American Chemical Society. 130 (32): 10494–5. doi:10.1021/ja803947s. PMC   2673804 . PMID   18630909.
  3. Frechet, JM; Bachelder, EM; Beaudette, TT; Broaders, KE. "Acid-Degradable and Bioerodible Modified Polyhydroxylated Materials". Google Patent.
  4. 1 2 Kauffman, KJ; Do, C; Sharma, S; Gallovic, MD; Bachelder, EM; Ainslie, KM (Aug 2012). "Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product". ACS Appl Mater Interfaces. 4 (8): 4149–55. doi:10.1021/am3008888. hdl: 1811/86186 . PMID   22833690.
  5. 1 2 3 Broaders, KE; Cohen, JA; Beaudette, TT; Bachelder, EM; Fréchet, JM (Apr 2009). "Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy". PNAS. 106 (14): 5497–502. Bibcode:2009PNAS..106.5497B. doi: 10.1073/pnas.0901592106 . PMC   2666992 . PMID   19321415.
  6. Chen, N; Collier, MA; Gallovic, MD; Sanchez, CC; Fernandes, EQ; Bachelder, EM; Ainslie, KM (Oct 2016). "Degradation of acetalated dextran can be broadly tuned based on cyclic acetal coverage and molecular weight". Int J Pharm. 512 (1): 147–157. doi:10.1016/j.ijpharm.2016.08.031. PMID   27543351.
  7. Suarez, S; Grover, GN; Braden, RL; Christman, KL; Almutairi, A (2013). "Tunable protein release from acetalated dextran microparticles: a platform for delivery of protein therapeutics to the heart post-MI". Biomacromolecules. 14 (11): 3927–35. doi:10.1021/bm401050j. PMC   3910395 . PMID   24053580.
  8. Chen, N; Gallovic, MD; Tiet, P; Ting, JP; Ainslie, KM; Bachelder, EM (2018). "Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy". Journal of Controlled Release. 289: 114–124. doi:10.1016/j.jconrel.2018.09.020. PMC   6365168 . PMID   30261204.
  9. D'Lima, Jessica (4 September 2018). "Stimuli-Responsive Drug Delivery: A New Way To Treat Gout". Advanced Science News. Wiley. Retrieved 31 December 2018.
  10. Kanthamneni, N; Sharma, S; Meenach, S; Billet, B; Zhao, J; Bachelder, E; Ainslie, K (Jul 2012). "Enhanced stability of horseradish peroxidase encapsulated in acetalated dextran microparticles stored outside cold chain conditions". Int J Pharm. 431 (1–2): 101–10. doi:10.1016/j.ijpharm.2012.04.043. PMID   22548844.