Lamellibrachia luymesi

Last updated

Lamellibrachia luymesi
Lamellibrachia luymesi1.png
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Annelida
Clade: Pleistoannelida
Subclass: Sedentaria
Order: Sabellida
Family: Siboglinidae
Genus: Lamellibrachia
Species:
L. luymesi
Binomial name
Lamellibrachia luymesi

Lamellibrachia luymesi is a species of tube worms in the family Siboglinidae. It lives at deep-sea cold seeps where hydrocarbons (oil and methane) are leaking out of the seafloor. It is entirely reliant on internal, sulfide-oxidizing bacterial symbionts for its nutrition. These are located in a centrally located "trophosome".

Symbiotic vestimentiferan tubeworm Lamellibrachia luymesi from a cold seep at 550 m depth in the Gulf of Mexico: In the sediments around the base are orange bacterial mats of the sulfide-oxidizing bacteria Beggiatoa spp. and empty shells of various clams and snails, which are also common inhabitants of the seeps. Lamellibrachia luymesi.png
Symbiotic vestimentiferan tubeworm Lamellibrachia luymesi from a cold seep at 550 m depth in the Gulf of Mexico: In the sediments around the base are orange bacterial mats of the sulfide-oxidizing bacteria Beggiatoa spp. and empty shells of various clams and snails, which are also common inhabitants of the seeps.
Model of Lamellibrachia luymesi include advection and diffusion of sulfate, sulfide, methane, bicarbonate, and hydrogen ions, as well as organic carbon content of sediments. Lamellibrachia luymesi model.png
Model of Lamellibrachia luymesi include advection and diffusion of sulfate, sulfide, methane, bicarbonate, and hydrogen ions, as well as organic carbon content of sediments.

Lamellibrachia luymesi provides the bacteria with hydrogen sulfide and oxygen by taking them up from the environment and binding them to a specialized hemoglobin molecule. Unlike the tube worms Riftia pachyptila that live at hydrothermal vents, L. luymesi uses a posterior extension of its body called the root to take up hydrogen sulfide from the seep sediments. L. luymesi may also help fuel the generation of sulfide by excreting sulfate through their roots into the sediments below the aggregations. [2]

To support the carbon fixation they need for maintenance and growth, L. luymesi needs to extract sulfide, oxygen, and inorganic carbon from its environment and supply them to its symbionts in the trophosome via the vascular system. It also needs to ensure that no build up of the sulfate and hydrogen ion waste products occurs, which would inhibit the bacterial activity. Laboratory experiments have shown that although some of the waste products diffuse into the water column, about 85% of the sulfate produced and about 67% of the hydrogen ions are eliminated across the roots. [3]

The most well-known seeps where L. luymesi lives are in the northern Gulf of Mexico from 500 to 800 m depth. This tube worm can reach lengths over 3 m (10 ft), and grows very slowly, and its longevity is over 250 years. It forms biogenic habitat by creating large aggregations of hundreds to thousands of individuals. Hydrogen sulfide can be lethal for many marine organisms, and the tubeworms help minimise the sulfide levels and maintain a stable habitat. Living in these aggregations are over 100 different species of animals, including brachiopods, molluscs, sponges, arthropoda, and chordates, many of which are found only at these seeps. [4]

Related Research Articles

<span class="mw-page-title-main">Siboglinidae</span> Family of annelid worms

Siboglinidae is a family of polychaete annelid worms whose members made up the former phyla Pogonophora and Vestimentifera. The family is composed of around 100 species of vermiform creatures which live in thin tubes buried in sediment (Pogonophora) or in tubes attached to hard substratum (Vestimentifera) at ocean depths ranging from 100 to 10,000 m. They can also be found in association with hydrothermal vents, methane seeps, sunken plant material, and whale carcasses.

<span class="mw-page-title-main">Marine worm</span>

Any worm that lives in a marine environment is considered a water worm. Marine worms are found in several different phyla, including the Platyhelminthes, Nematoda, Annelida, Chaetognatha, Hemichordata, and Phoronida. For a list of marine animals that have been called "sea worms", see sea worm.

<span class="mw-page-title-main">Hydrogen sulfide</span> Poisonous, corrosive and flammable gas

Hydrogen sulfide is a chemical compound with the formula H2S. It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The underground mine gas term for foul-smelling hydrogen sulfide-rich gas mixtures is stinkdamp. Swedish chemist Carl Wilhelm Scheele is credited with having discovered the chemical composition of purified hydrogen sulfide in 1777. The British English spelling of this compound is hydrogen sulphide, a spelling no longer recommended by the Royal Society of Chemistry or the International Union of Pure and Applied Chemistry.

<span class="mw-page-title-main">Chemosynthesis</span> Biological process building organic matter using inorganic compounds as the energy source

In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules and nutrients into organic matter, organisms that obtain carbon from carbon dioxide through chemosynthesis, are phylogenetically diverse. Groups that include conspicuous or biogeochemically important taxa include the sulfur-oxidizing Gammaproteobacteria, the Campylobacterota, the Aquificota, the methanogenic archaea, and the neutrophilic iron-oxidizing bacteria.

<span class="mw-page-title-main">Hydrothermal vent</span> Fissure in a planets surface from which heated water emits

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

<span class="mw-page-title-main">Cold seep</span> Ocean floor area where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs

A cold seep is an area of the ocean floor where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water. On the contrary, its temperature is often slightly higher. The "cold" is relative to the very warm conditions of a hydrothermal vent. Cold seeps constitute a biome supporting several endemic species.

<i>Riftia pachyptila</i> Giant tube worm (species of annelid)

Riftia pachyptila, commonly known as the giant tube worm and less commonly known as the giant beardworm, is a marine invertebrate in the phylum Annelida related to tube worms commonly found in the intertidal and pelagic zones. R. pachyptila lives on the floor of the Pacific Ocean near hydrothermal vents. The vents provide a natural ambient temperature in their environment ranging from 2 to 30 °C, and this organism can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 3 m, and their tubular bodies have a diameter of 4 cm (1.6 in).

<span class="mw-page-title-main">Sulfur cycle</span> Biogeochemical cycle of sulfur

The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. The global sulfur cycle involves the transformations of sulfur species through different oxidation states, which play an important role in both geological and biological processes. Steps of the sulfur cycle are:

<i>Beggiatoa</i> Genus of bacteria

Beggiatoa is a genus of Gammaproteobacteria belonging to the order Thiotrichales, in the Pseudomonadota phylum. This genus was one of the first bacteria discovered by Ukrainian botanist Sergei Winogradsky. During his research in Anton de Bary's laboratory of botany in 1887, he found that  Beggiatoa  oxidized  hydrogen sulfide  (H2S) as an energy source, forming intracellular  sulfur  droplets, with oxygen as the terminal electron acceptor and CO2 used as a carbon source. Winogradsky named it in honor of the Italian doctor and botanist  Francesco Secondo Beggiato (1806 - 1883), from Venice. Winogradsky referred to this form of metabolism as "inorgoxidation" (oxidation of inorganic compounds), today called chemolithotrophy. These organisms live in sulfur-rich environments such as soil, both marine and freshwater, in the deep sea hydrothermal vents and in polluted marine environments. The finding represented the first discovery of lithotrophy. Two species of Beggiatoa have been formally described: the type species Beggiatoa alba and Beggiatoa leptomitoformis, the latter of which was only published in 2017. This colorless and filamentous bacterium, sometimes in association with other sulfur bacteria (for example the genus Thiothrix), can be arranged in biofilm visible to the naked eye formed by a very long white filamentous mat, the white color is due to the stored sulfur. Species of Beggiatoa have cells up to 200 µm in diameter and they are one of the largest prokaryotes on Earth.

<i>Lamellibrachia</i> Genus of annelids

Lamellibrachia is a genus of tube worms related to the giant tube worm, Riftia pachyptila. They live at deep-sea cold seeps where hydrocarbons leak out of the seafloor, and are entirely reliant on internal, sulfide-oxidizing bacterial symbionts for their nutrition. The symbionts, gammaproteobacteria, require sulfide and inorganic carbon. The tube worms extract dissolved oxygen and hydrogen sulfide from the sea water with the crown of plumes. Species living near seeps can also obtain sulfide through their "roots", posterior extensions of their body and tube. Several sorts of hemoglobin are present in the blood and coelomic fluid to bind to the different components and transport them to the symbionts.

<span class="mw-page-title-main">Gammaproteobacteria</span> Class of bacteria

Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota. It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically important groups of bacteria belong to this class. It is composed by all Gram-negative microbes and is the most phylogenetically and physiologically diverse class of Proteobacteria.

<span class="mw-page-title-main">Trophosome</span> Organ containing endosymbionts

A trophosome is a highly vascularised organ found in some animals that houses symbiotic bacteria that provide food for their host. Trophosomes are contained by the coelom of the vestimentiferan tube worms and in the body of symbiotic flatworms of the genus Paracatenula.

<i>Olavius algarvensis</i> Species of annelid worm

Olavius algarvensis is a species of gutless oligochaete worm in the family Tubificidae which depends on symbiotic bacteria for its nutrition.

Sulfurimonas is a bacterial genus within the class of Campylobacterota, known for reducing nitrate, oxidizing both sulfur and hydrogen, and containing Group IV hydrogenases. This genus consists of four species: Sulfurimonas autorophica, Sulfurimonas denitrificans, Sulfurimonas gotlandica, and Sulfurimonas paralvinellae. The genus' name is derived from "sulfur" in Latin and "monas" from Greek, together meaning a “sulfur-oxidizing rod”. The size of the bacteria varies between about 1.5-2.5 μm in length and 0.5-1.0 μm in width. Members of the genus Sulfurimonas are found in a variety of different environments which include deep sea-vents, marine sediments, and terrestrial habitats. Their ability to survive in extreme conditions is attributed to multiple copies of one enzyme. Phylogenetic analysis suggests that members of the genus Sulfurimonas have limited dispersal ability and its speciation was affected by geographical isolation rather than hydrothermal composition. Deep ocean currents affect the dispersal of Sulfurimonas spp., influencing its speciation. As shown in the MLSA report of deep-sea hydrothermal vents Campylobacterota, Sulfurimonas has a higher dispersal capability compared with deep sea hydrothermal vent thermophiles, indicating allopatric speciation.

<i>Paracatenula</i> Genus of flatworms

Paracatenula is a genus of millimeter sized free-living marine gutless catenulid flatworms.

<span class="mw-page-title-main">Olev Vinn</span> Estonian paleontologist (born 1971)

Olev Vinn is Estonian paleobiologist and paleontologist.

<span class="mw-page-title-main">Hydrothermal vent microbial communities</span> Undersea unicellular organisms

The hydrothermal vent microbial community includes all unicellular organisms that live and reproduce in a chemically distinct area around hydrothermal vents. These include organisms in the microbial mat, free floating cells, or bacteria in an endosymbiotic relationship with animals. Chemolithoautotrophic bacteria derive nutrients and energy from the geological activity at Hydrothermal vents to fix carbon into organic forms. Viruses are also a part of the hydrothermal vent microbial community and their influence on the microbial ecology in these ecosystems is a burgeoning field of research.

<span class="mw-page-title-main">Peter Girguis</span> American scientist of microbial symbiosis

Peter R. Girguis is a professor in the department of Organismic and Evolutionary Biology at Harvard University, where he leads a lab that studies animals and microbes that live in extreme environments. He and his lab also develop novel underwater instruments such as underwater mass spectrometers. Girguis was the founder and Chief Technology Officer of Trophos Energy from 2010 to 2012, which focused on commercializing microbial fuel cell technologies. The company was bought by Teledyne Benthos in 2012. Girguis currently serves as a board member of the Ocean Exploration Trust and the Schmidt Marine Technology Partners.

Hydrogen sulfide chemosynthesis is a form of chemosynthesis which uses hydrogen sulfide. It is common in hydrothermal vent microbial communities Due to the lack of light in these environments this is predominant over photosynthesis

<i>Lamellibrachia satsuma</i> Species of tube worms in the family Siboglinidae

Lamellibrachia satsuma is a vestimentiferan tube worm that was discovered near a hydrothermal vent in Kagoshima Bay, Kagoshima at the depth of only 82 m (269 ft) the shallowest depth record for a vestimentiferan. Its symbiotic sulfur oxidizer bacteria have been characterised as ε-Proteobacteria and γ-Proteobacteria. Subspecies have been later found associated with cold seeps at Hatsushima in Sagami Bay and at the Daini Tenryu Knoll in the Nankai Trough with specimens obtained at up to 1,170 m (3,840 ft) depth.

References

This article incorporates a CC-BY-2.5 from references. [1] [2]

  1. 1 2 Boetius A. (2005). "Microfauna–Macrofauna Interaction in the Seafloor: Lessons from the Tubeworm". PLoS Biology 3(3): e102. doi : 10.1371/journal.pbio.0030102
  2. 1 2 3 Cordes E. E., Arthur M. A., Shea K., Arvidson R. S. & Fisher C. R. (2005). "Modeling the Mutualistic Interactions between Tubeworms and Microbial Consortia". PLoS Biology 3(3): e77. doi : 10.1371/journal.pbio.0030077
  3. Sharmishtha Dattagupta, Lara L. Miles, Matthew S. Barnabei, Charles R. Fisher (2006). "The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply". Journal of Experimental Biology. 209 (19): 3795–3805. doi:10.1242/jeb.02413. PMID   16985196.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Alexia Barlikas, Asa Dewan, Mofolusho Sodeke (2011). "Lamellibrachia luymesi". Animal Diversity Web. Retrieved 28 June 2020.{{cite web}}: CS1 maint: multiple names: authors list (link)