Line integral convolution

Last updated
Image of the Large Magellanic Cloud, one of the nearest galaxies to our Milky Way, created with LIC Rotation of the Large Magellanic Cloud ESA393163.png
Image of the Large Magellanic Cloud, one of the nearest galaxies to our Milky Way, created with LIC

In scientific visualization, line integral convolution (LIC) is a method to visualize a vector field (such as fluid motion) at high spatial resolutions. [1] The LIC technique was first proposed by Brian Cabral and Leith Casey Leedom in 1993. [2]

Contents

In LIC, discrete numerical line integration is performed along the field lines (curves) of the vector field on a uniform grid. The integral operation is a convolution of a filter kernel and an input texture, often white noise. [1] In signal processing, this process is known as a discrete convolution. [3]

Overview

Traditional visualizations of vector fields use small arrows or lines to represent vector direction and magnitude. This method has a low spatial resolution, which limits the density of presentable data and risks obscuring characteristic features in the data. [1] [3] More sophisticated methods, such as streamlines and particle tracing techniques, can be more revealing but are highly dependent on proper seed points. [1] Texture-based methods, like LIC, avoid these problems since they depict the entire vector field at point-like (pixel) resolution. [1]

Compared to other integration-based techniques that compute field lines of the input vector field, LIC has the advantage that all structural features of the vector field are displayed, without the need to adapt the start and end points of field lines to the specific vector field. In other words, it shows the topology of the vector field.[ citation needed ]

In user testing, LIC was found to be particularly good for identifying critical points. [4]

Algorithm

Informal description

LIC causes output values to be strongly correlated along the field lines, but uncorrelated in orthogonal directions. [1] As a result, the field lines contrast each other and stand out visually from the background.

Intuitively, the process can be understood with the following example: the flow of a vector field can be visualized by overlaying a fixed, random pattern of dark and light paint. As the flow passes by the paint, the fluid picks up some of the paint's color, averaging it with the color it has already acquired. The result is a randomly striped, smeared texture where points along the same streamline tend to have a similar color. Other physical examples include:

Formal mathematical description

Although the input vector field and the result image are discretized, it pays to look at it from a continuous viewpoint. [1] Let be the vector field given in some domain . Although the input vector field is typically discretized, we regard the field as defined in every point of , i.e. we assume an interpolation. Streamlines, or more generally field lines, are tangent to the vector field in each point. They end either at the boundary of or at critical points where . For the sake of simplicity, critical points and boundaries are ignored in the following.

A field line , parametrized by arc length , is defined as Let be the field line that passes through the point for . Then the image gray value at is set to

where is the convolution kernel, is the noise image, and is the length of field line segment that is followed.

has to be computed for each pixel in the LIC image. If carried out naively, this is quite expensive. First, the field lines have to be computed using a numerical method for solving ordinary differential equations, like a Runge–Kutta method, and then for each pixel the convolution along a field line segment has to be calculated.

The final image will normally be colored in some way. Typically, some scalar field in (like the vector length) is used to determine the hue, while the grayscale LIC output determines the brightness.

Different choices of convolution kernels and random noise produce different textures; for example, pink noise produces a cloudy pattern where areas of higher flow stand out as smearing, suitable for weather visualization. Further refinements in the convolution can improve the quality of the image. [6]

Programming description

Algorithmically, LIC takes a vector field and noise texture as input, and outputs a texture. The process starts by generating in the domain of the vector field a random gray level image at the desired output resolution. Then, for every pixel in this image, the forward and backward streamline of a fixed arc length is calculated. The value assigned to the current pixel is computed by a convolution of a suitable convolution kernel with the gray levels of all the noise pixels lying on a segment of this streamline. This creates a gray level LIC image.

Versions

Basic

Basic LIC visualization of a flow field Line integral convolution visualisation.png
Basic LIC visualization of a flow field

Basic LIC images are grayscale images, without color and animation. While such LIC images convey the direction of the field vectors, they do not indicate orientation; for stationary fields, this can be remedied by animation. Basic LIC images do not show the length of the vectors (or the strength of the field).

Color

LIC with color denoting velocity magnitude Line integral convolution visualisation (color).png
LIC with color denoting velocity magnitude

The length of the vectors (or the strength of the field) is usually coded in color; alternatively, animation can be used. [2] [1]

Animation

Illustration of how LIC is animated.
Top: normal box filter (average).
Middle: sinusoidal filter at
t
{\displaystyle t}
.
Bottom: sinusoidal filter at
t
+
d
t
{\displaystyle t+\delta t}
. Animated LIC.svg
Illustration of how LIC is animated.
Top: normal box filter (average).
Middle: sinusoidal filter at .
Bottom: sinusoidal filter at .

LIC images can be animated by using a kernel that changes over time. Samples at a constant time from the streamline would still be used, but instead of averaging all pixels in a streamline with a static kernel, a ripple-like kernel constructed from a periodic function multiplied by a Hann function acting as a window (in order to prevent artifacts) is used. The periodic function is then shifted along the period to create an animation.

Fast LIC (FLIC)

The computation can be significantly accelerated by re-using parts of already computed field lines, specializing to a box function as convolution kernel and avoiding redundant computations during convolution. [1] The resulting fast LIC method can be generalized to convolution kernels that are arbitrary polynomials. [7]

Oriented Line Integral Convolution (OLIC)

Because LIC does not encode flow orientation, it cannot distinguish between streamlines of equal direction but opposite orientation. [8] Oriented Line Integral Convolution (OLIC) solves this issue by using a ramp-like asymmetric kernel and a low-density noise texture. [8] The kernel asymmetrically modulates the intensity along the streamline, producing a trace that encodes orientation; the low-density of the noise texture prevents smeared traces from overlapping, aiding readability.

Fast Rendering of Oriented Line Integral Convolution (FROLIC) is a variation that approximates OLIC by rendering each trace in discrete steps instead of as a continuous smear. [8] [9]

Unsteady Flow LIC (UFLIC)

For time-dependent vector fields (unsteady flow), a variant called Unsteady Flow LIC has been designed that maintains the coherence of the flow animation. [10] An interactive GPU-based implementation of UFLIC has been presented. [11]

Parallel

Since the computation of an LIC image is expensive but inherently parallel, the process has been parallelized [12] and, with availability of GPU-based implementations, interactive on PCs.

Multidimensional

Note that the domain does not have to be a 2D domain: the method is applicable to higher dimensional domains using multidimensional noise fields. However, the visualization of the higher-dimensional LIC texture is problematic; one way is to use interactive exploration with 2D slices that are manually positioned and rotated. The domain does not have to be flat either; the LIC texture can be computed also for arbitrarily shaped 2D surfaces in 3D space. [13]

Applications

This technique has been applied to a wide range of problems since it first was published in 1993, both scientific and creative, including:

Representing vector fields:

Artistic effects for image generation and stylization:

Terrain generalization:

Implementations

See also

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Magnetic flux</span> Surface integral of the magnetic field

In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or ΦB. The SI unit of magnetic flux is the weber, and the CGS unit is the maxwell. Magnetic flux is usually measured with a fluxmeter, which contains measuring coils, and it calculates the magnetic flux from the change of voltage on the coils.

In continuum mechanics, vorticity is a pseudovector field that describes the local spinning motion of a continuum near some point, as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of vortex rings.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Stream function</span> Function for incompressible divergence-free flows in two dimensions

In fluid dynamics, two types of stream function are defined:

<span class="mw-page-title-main">Sobel operator</span> Image edge detection algorithm

The Sobel operator, sometimes called the Sobel–Feldman operator or Sobel filter, is used in image processing and computer vision, particularly within edge detection algorithms where it creates an image emphasising edges. It is named after Irwin Sobel and Gary M. Feldman, colleagues at the Stanford Artificial Intelligence Laboratory (SAIL). Sobel and Feldman presented the idea of an "Isotropic 3 × 3 Image Gradient Operator" at a talk at SAIL in 1968. Technically, it is a discrete differentiation operator, computing an approximation of the gradient of the image intensity function. At each point in the image, the result of the Sobel–Feldman operator is either the corresponding gradient vector or the norm of this vector. The Sobel–Feldman operator is based on convolving the image with a small, separable, and integer-valued filter in the horizontal and vertical directions and is therefore relatively inexpensive in terms of computations. On the other hand, the gradient approximation that it produces is relatively crude, in particular for high-frequency variations in the image.

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

<span class="mw-page-title-main">Scientific visualization</span> Interdisciplinary branch of science concerned with presenting scientific data visually

Scientific visualization is an interdisciplinary branch of science concerned with the visualization of scientific phenomena. It is also considered a subset of computer graphics, a branch of computer science. The purpose of scientific visualization is to graphically illustrate scientific data to enable scientists to understand, illustrate, and glean insight from their data. Research into how people read and misread various types of visualizations is helping to determine what types and features of visualizations are most understandable and effective in conveying information.

In physics and mathematics, the Helmholtz decomposition theorem or the fundamental theorem of vector calculus states that certain differentiable vector fields can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field. In physics, often only the decomposition of sufficiently smooth, rapidly decaying vector fields in three dimensions is discussed. It is named after Hermann von Helmholtz.

<span class="mw-page-title-main">Smoothed-particle hydrodynamics</span> Method of hydrodynamics simulation

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.

<span class="mw-page-title-main">Field line</span> Visual aid to depiction of a vector field

A field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary integral curve which is tangent to the field vector at each point along its length. A diagram showing a representative set of neighboring field lines is a common way of depicting a vector field in scientific and mathematical literature; this is called a field line diagram. They are used to show electric fields, magnetic fields, and gravitational fields among many other types. In fluid mechanics, field lines showing the velocity field of a fluid flow are called streamlines.

The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.

<span class="mw-page-title-main">Bilateral filter</span> Smoothing filler for images

A bilateral filter is a non-linear, edge-preserving, and noise-reducing smoothing filter for images. It replaces the intensity of each pixel with a weighted average of intensity values from nearby pixels. This weight can be based on a Gaussian distribution. Crucially, the weights depend not only on Euclidean distance of pixels, but also on the radiometric differences. This preserves sharp edges.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

<span class="mw-page-title-main">Generalized chi-squared distribution</span>

In probability theory and statistics, the generalized chi-squared distribution is the distribution of a quadratic form of a multinormal variable, or a linear combination of different normal variables and squares of normal variables. Equivalently, it is also a linear sum of independent noncentral chi-square variables and a normal variable. There are several other such generalizations for which the same term is sometimes used; some of them are special cases of the family discussed here, for example the gamma distribution.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence:

In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more. This is accomplished by doing a convolution between the kernel and an image. Or more simply, when each pixel in the output image is a function of the nearby pixels in the input image, the kernel is that function.

Kernel methods are a well-established tool to analyze the relationship between input data and the corresponding output of a function. Kernels encapsulate the properties of functions in a computationally efficient way and allow algorithms to easily swap functions of varying complexity.

<span class="mw-page-title-main">Gradient vector flow</span> Computer vision framework

Gradient vector flow (GVF), a computer vision framework introduced by Chenyang Xu and Jerry L. Prince, is the vector field that is produced by a process that smooths and diffuses an input vector field. It is usually used to create a vector field from images that points to object edges from a distance. It is widely used in image analysis and computer vision applications for object tracking, shape recognition, segmentation, and edge detection. In particular, it is commonly used in conjunction with active contour model.

References

  1. 1 2 3 4 5 6 7 8 9 Stalling, Detlev; Hege, Hans-Christian (August 6–11, 1995). "Fast and Resolution Independent Line Integral Convolution". Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH '95. Los Angeles, California. pp.  249–256. CiteSeerX   10.1.1.45.5526 . doi:10.1145/218380.218448. ISBN   0-89791-701-4.
  2. 1 2 Cabral, Brian; Leedom, Leith Casey (August 2–6, 1993). "Imaging Vector Fields Using Line Integral Convolution". Proceedings of the 20th annual conference on Computer graphics and interactive techniques. SIGGRAPH '93. Anaheim, California. pp. 263–270. CiteSeerX   10.1.1.115.1636 . doi:10.1145/166117.166151. ISBN   0-89791-601-8.
  3. 1 2 Ward, Matthew O. (February 5, 1996). "Line Integral Convolution for Flow Visualization". Worcester Polytechnic Institute. Retrieved 2024-07-21.
  4. Laidlaw, David H.; Kirby, Robert M.; Davidson, J. Scott; Miller, Timothy S.; da Silva, Marco; Warren, William H.; Tarr, Michael J. (October 21–26, 2001). "Quantitative Comparative Evaluation of 2D Vector Field Visualization Methods". IEEE Visualization 2001, VIS '01. Proceedings. San Diego, CA, USA. pp. 143–150.
  5. Liu, Zhanping (Aug 21, 2007). "LIC (Line Integral Convolution)" . Retrieved 2024-07-21.
  6. Weiskopf, Daniel (2009). "Iterative Twofold Line Integral Convolution for Texture-Based Vector Field Visualization". In Möller, Torsten; Hamann, Bernd; Russell, Robert D. (eds.). Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration . Mathematics and Visualization. Berlin, New York: Springer. pp.  191–211. CiteSeerX   10.1.1.66.3013 . doi:10.1007/b106657_10. ISBN   978-3-540-25076-0.[ dead link ]
  7. Hege, Hans-Christian; Stalling, Detlev (1998), "Fast LIC with Piecewise Polynomial Filter Kernels", in Hege, Hans-Christian; Polthier, Konrad (eds.), Mathematical Visualization, Berlin, Heidelberg: Springer-Verlag, pp. 295–314, CiteSeerX   10.1.1.31.504 , doi:10.1007/978-3-662-03567-2_22, ISBN   978-3-642-08373-0
  8. 1 2 3 Wegenkittl, Rainer; Gröller, Eduard (24 October 1997). "Fast oriented line integral convolution for vector field visualization via the Internet" (PDF). Proceedings. Visualization '97 (Cat. No. 97CB36155). pp. 309–316. doi:10.1109/VISUAL.1997.663897. ISBN   0-8186-8262-0.
  9. Java Exploration Tool for Dynamical Systems by R. Wegenkittl and E. Gröller.
  10. Shen, Han-Wei; Kam, David L. (1998). "A New Line Integral Convolution Algorithm for Visualizing Time-Varying Flow Fields" (PDF). IEEE Trans Vis Comput Graph. 4 (2). Los Alamitos: IEEE: 98–108. doi:10.1109/2945.694952. ISSN   1077-2626.
  11. Ding, Zi'ang; Liu, Zhanping; Yu, Yang; Chen, Wei (2015). "Parallel unsteady flow line integral convolution for high-performance dense visualization". 2015 IEEE Pacific Visualization Symposium, PacificVis 2015. Hangzhou, China. pp. 25–30.
  12. Zöckler, Malte; Stalling, Detlev; Hege, Hans-Christian (1997). "Parallel Line Integral Convolution" (PDF). Parallel Computing. 23 (7). Amsterdam: North Holland: 975–989. doi:10.1016/S0167-8191(97)00039-2. ISSN   0167-8191.
  13. Battke, Henrik; Stalling, Detlev; Hege, Hans-Christian (1997). "Fast Line Integral Convolution for Arbitrary Surfaces in 3D". In Hege, Hans-Christian; Polthier, Konrad (eds.). Visualization and Mathematics: Experiments, Simulations, and Environments . Berlin, New York: Springer. pp.  181–195. CiteSeerX   10.1.1.71.7228 . doi:10.1007/978-3-642-59195-2_12. ISBN   3-540-61269-6.
  14. DAAC: Line Integral Convolution
  15. Visual exploration of 2D autonomous dynamical systems Thomas Müller2,1 and Filip Sadlo1 Published 26 February 2015 • © 2015 IOP Publishing Ltd European Journal of Physics, Volume 36, Number 3
  16. A real-time map of the wind in the U.S. by Fernanda Viégas and Martin Wattenberg.
  17. researchgate publication: Sun, Shuo & Huang, Dongwei. (2022). Efficient Region-Based Pencil Drawing.
  18. S. Yamamoto, Xiaoyang Mo and A. Imamiya, "Enhanced LIC pencil filter," Proceedings. International Conference on Computer Graphics, Imaging and Visualization, 2004. CGIV 2004., 2004, pp. 251-256, doi: 10.1109/CGIV.2004.1323994.
  19. Xiaoyang Mao, M. Kikukawa, K. Kashio and A. Imamiya, "Automatic generation of hair texture with line integral convolution," 2000 IEEE Conference on Information Visualization. An International Conference on Computer Visualization and Graphics, 2000, pp. 303-308, doi: 10.1109/IV.2000.859772.
  20. Xiaoyang Mao, Toshikazu Suzuki, and Atsumi Imamiya. 2003. AtelierM: a physically based interactive system for creating traditional marbling textures. In Proceedings of the 1st international conference on Computer graphics and interactive techniques in Australasia and South East Asia (GRAPHITE '03). Association for Computing Machinery, New York, NY, USA, 79–ff. https://doi.org/10.1145/604471.604489
  21. Bernhard Jenny (2021) Terrain generalization with line integral convolution, Cartography and Geographic Information Science, 48:1, 78-92, DOI: 10.1080/15230406.2020.1833762