Terrain cartography

Last updated
USGS topographic map of Stowe, Vermont with contour lines at 20-foot intervals Topographic map example.png
USGS topographic map of Stowe, Vermont with contour lines at 20-foot intervals

Terrain cartography or relief mapping is the depiction of the shape of the surface of the Earth on a map, using one or more of several techniques that have been developed. Terrain or relief is an essential aspect of physical geography, and as such its portrayal presents a central problem in cartographic design, and more recently geographic information systems and geovisualization.

Contents

Hill profiles

From a 1639 map of Hispaniola by Johannes Vingboons, showing use of hill profiles Higuey.jpg
From a 1639 map of Hispaniola by Johannes Vingboons, showing use of hill profiles

The most ancient form of relief depiction in cartography, hill profiles are simply illustrations of mountains and hills in profile, placed as appropriate on generally small-scale (broad area of coverage) maps. They are seldom used today except as part of an "antique" styling.

Physiographic illustration

Section of Raisz' 1941 map of the Northwestern United States, showing his style of landform illustration Raisz 1941 Olympic Peninsula Puget Sound.png
Section of Raisz' 1941 map of the Northwestern United States, showing his style of landform illustration

In 1921, A.K. Lobeck published A Physiographic Diagram of the United States, using an advanced version of the hill profile technique to illustrate the distribution of landforms on a small-scale map. [1] Erwin Raisz further developed, standardized, and taught this technique, which uses generalized texture to imitate landform shapes over a large area. [2] A combination of hill profile and shaded relief, this style of terrain representation is simultaneously idiosyncratic to its creator—often hand-painted—and found insightful in illustrating geomorphological patterns.

Plan oblique relief

Web version of Patterson's Physical Map of the Coterminous United States featuring plan oblique relief. Note the appearance of the Rocky Mountains in the full-size version. USPhysical-Web5.jpg
Web version of Patterson's Physical Map of the Coterminous United States featuring plan oblique relief. Note the appearance of the Rocky Mountains in the full-size version.

More recently, Tom Patterson developed a computer-generated technique for mapping terrain inspired by Raisz's work, called plan oblique relief. [3] This tool starts with a shaded relief image, then shifts pixels northward proportional to their elevation. The effect is to make mountains "stand up" and "lay over" features to the north, in the same fashion as hill profiles. Some viewers are able to see the effect more easily than others.

Hachures

Dufour map of Bern (1907); this is a shaded hachure map. Dufour-karte-bern 1-880x803.jpg
Dufour map of Bern (1907); this is a shaded hachure map.

Hachures, first standardized by the Austrian topographer Johann Georg Lehmann in 1799, are a form of shading using lines. They show the orientation of slope, and by their thickness and overall density they provide a general sense of steepness. Being non-numeric, they are less useful to a scientific survey than contours, but can successfully communicate quite specific shapes of terrain. [2] They are especially effective at showing relatively low relief, such as rolling hills. It was a standard on topographic maps of Germany well into the 20th Century.

There have been multiple attempts to recreate this technique using digital GIS data, with mixed results.

Contour lines

First developed in France in the 18th Century, contour lines (or isohypses) are isolines of equal elevation. This is the most common way of visualizing elevation quantitatively, and is familiar from topographic maps.

Most 18th- and early 19th-century national surveys did not record relief across the entire area of coverage, calculating only spot elevations at survey points. The United States Geological Survey (USGS) topographical survey maps included contour representation of relief, and so maps that show relief, especially with exact representation of elevation, came to be called topographic maps (or "topo" maps) in the United States, and the usage has spread internationally.

Siegfried map of Bernina Pass (1877) with black, blue and brown contour lines at 30-meter intervals Berninapass 1877 Siegfriedkarte.jpg
Siegfried map of Bernina Pass (1877) with black, blue and brown contour lines at 30-meter intervals

On maps produced by Swisstopo, the color of the contour lines is used to indicate the type of ground: black for bare rock and scree, blue for ice and underwater contours, and brown for earth-covered ground. [4]

Tanaka (relief) contours

The Tanaka (relief) contours technique is a method used to illuminate contour lines in order to help visualize terrain. Lines are highlighted or shaded depending on their relationship to a light source in the Northwest. If the object being illustrated would shadow a section of contour line, that contour would be represented with a black band. Otherwise, slopes facing the light source would be represented by white bands.

This method was developed by Professor Tanaka Kitiro in 1950, but had been experimented with as early as 1870, with little success due to technological limitations in printing. The resulting terrain at this point was a grayscale image. [5] Cartographer Berthold Horn later created software to digitally produce Tanaka Contours, and Patrick Kennelly, another cartographer, later found a way to add color to these maps, making them more realistic. [6]

There are a number of issues with this method. Historically, printing technology did not reproduce Tanaka contours well, especially the white lines on a gray background. This method is also very time-consuming. In addition, the terraced appearance does not look appealing or accurate in some kinds of terrain. [7]

Hypsometric tints

Hypsometric tints (also called layer tinting, elevation tinting, elevation coloring, or hysometric coloring) are colors placed between contour lines to indicate elevation . These tints are shown as bands of color in a graduated scheme or as a color scheme applied to contour lines themselves; either method is considered a type of Isarithmic map . Hypsometric tinting of maps and globes is often accompanied by a similar method of bathymetric tinting to convey differences in water depth.

Shaded relief

Top: map of Lake Mead area.
Bottom: the same map with sun shading. WWtopo shading.jpg
Top: map of Lake Mead area.
Bottom: the same map with sun shading.

Shaded relief, or hill-shading, shows the shape of the terrain in a realistic fashion by showing how the three-dimensional surface would be illuminated from a point light source. The shadows normally follow the convention of top-left lighting in which the light source is placed near the upper-left corner of the map. If the map is oriented with north at the top, the result is that the light appears to come from the north-west. Although this is unrealistic lighting in the northern hemisphere, using a southern light source can cause multistable perception illusions, in which the topography appears inverted. [8]

Shaded relief was traditionally drawn with charcoal, airbrush and other artist's media. The Swiss cartographer Eduard Imhof is widely regarded as a master of manual hill-shading technique and theory. Shaded relief is today almost exclusively computer-generated from digital elevation models (DEM). The mathematical basis of analytical hillshading is to calculate the surface normal at each location, then calculate the angle between that vector and the vector pointing to the illumination using the Dot product; the smaller that angle, the more illumination that location is receiving. However, most software implementations use algorithms that shorten those calculations. This tool is available in a variety of GIS and graphics software, including Photoshop, QGIS, GRASS GIS or ArcMap's Spatial Analyst extension.

While these relatively simple tools have made shaded relief almost ubiquitous in maps, many cartographers[ weasel words ] have been unhappy with the product,[ which? ] and have developed techniques to improve its appearance, including the following:

Illuminated shading

Imhof's contributions included a multi-color approach to shading, with purples in valleys and yellows on peaks, which is known as “illuminated shading.” Illuminating the sides of the terrain facing the light source with yellow colors provides greater realism (since direct sunlight is more yellow, and ambient light is more blue), enhances the sense of the three-dimensional nature of the terrain, and make the map more aesthetically pleasing and artistic-looking. [9] Much work has been done in digitally recreating the work of Eduard Imhof, which has been fairly successful in some cases. [10]

Multi-directional shading

Zion National Park, Utah, showing the effect of multi-directional hillshading. Left: one light source, standard northwest azimuth; Middle: average of two light sources, northwest + vertical; Right: average of 32 light sources from all directions but concentrated in the northwest, each with shadows added. Note the decreasing starkness, increasing realism, and increasing clarity of cliffs, canyons, and mountains in this area of over 1,000 m of local relief. Zion NP shaded relief.png
Zion National Park, Utah, showing the effect of multi-directional hillshading. Left: one light source, standard northwest azimuth; Middle: average of two light sources, northwest + vertical; Right: average of 32 light sources from all directions but concentrated in the northwest, each with shadows added. Note the decreasing starkness, increasing realism, and increasing clarity of cliffs, canyons, and mountains in this area of over 1,000 m of local relief.

A common criticism of computer-generated analytical hillshading is its stark, artificial look, in which slopes facing the light are solid white, and slopes facing away are solid black. Raisz called it "plastic shading," and others have said it looks like a moonscape. [2] One solution is to incorporate multiple lighting directions to imitate the effect of ambient lighting, creating a much more realistic looking product. Multiple techniques have been proposed for doing this, including using Geographic information systems software for generating multiple shaded relief images and averaging them together, using 3-d modeling software to render terrain, [11] and custom software tools to imitate natural lighting using up to hundreds of individual sources. [12] This technique has been found to be most effective for very rugged terrain at medium scales of 1:30,000 to 1:1,000,000.

Texture/bump mapping

Map of Crater Lake National Park, Oregon, using texture mapping to subtly indicate vegetation cover NPS crater-lake-map.jpg
Map of Crater Lake National Park, Oregon, using texture mapping to subtly indicate vegetation cover

It is possible to make the terrain look more realistic by imitating the three-dimensional look of not only the bare land surface, but also the features covering that land surface, such as buildings and plants. Texture mapping or bump mapping is a technique adapted from Computer graphics that adds a layer of shaded texture to the shaded surface relief that imitates the look of the local land cover. [13] This texture can be generated in several ways:

This technique is most useful at producing realistic maps at relatively large scales, 1:5,000 to 1:50,000.

Resolution mixing or bumping

An illustration of the resolution bumping technique of shaded relief, Bitterroot Mountains and Salmon River, Montana/Idaho. Left: 200 m resolution shaded relief, middle: shaded relief after 7000 m smoothing filter, right: 65%/35% mix. The original image looks uniformly rugged, while the one on the right emphasizes the larger mountains and canyons. Resolution bumping, Bitterroot Mountains.png
An illustration of the resolution bumping technique of shaded relief, Bitterroot Mountains and Salmon River, Montana/Idaho. Left: 200 m resolution shaded relief, middle: shaded relief after 7000 m smoothing filter, right: 65%/35% mix. The original image looks uniformly rugged, while the one on the right emphasizes the larger mountains and canyons.

One challenge with shaded relief, especially at small scales (1:500,000 or less), is that the technique is very good at visualizing local (high-frequency) relief, but may not effectively show larger features. For example, a rugged area of hills and valleys will show as much or more variation than a large, smooth mountain. Resolution bumping is a hybrid technique developed by NPS cartographer Tom Patterson to mitigate this problem. [16] A fine-resolution DEM is averaged with a heavily smoothed version (i.e., significantly coarser resolution). When the hillshading algorithm is applied to this, it has the effect of blending the fine details of the original terrain model with the broader features brought out by the smoothed model. This technique works best at small scales and in regions that are consistently rugged.

Oblique view

1618 oblique map of Paris by Claes Jansz. Visscher. Map of Paris by Claes Jansz. Visscher - Harold B. Lee Library.jpg
1618 oblique map of Paris by Claes Jansz. Visscher.

A three-dimensional view (projected onto a two-dimensional medium) of the surface of the Earth, along with the geographic features resting on it. Imagined aerial views of cities were first produced during the late Middle Ages, but these "bird's eye views" became very popular in the United States during the 1800s. The advent of GIS (especially recent advances in 3-D and global visualization) and 3-D graphics modeling software has made the production of realistic aerial views relatively easy, although the execution of quality Cartographic design on these models remains a challenge. [17]

Raised-relief map

Hand-made raised-relief map of the High Tatras in scale 1: 50 000 Tatry Mapa Plastyczna.JPG
Hand-made raised-relief map of the High Tatras in scale 1: 50 000

This is a map in which relief is shown as a three-dimensional object. The most intuitive way to depict relief is to imitate it at scale. Hand-crafted dioramas may date back to 200BCE in China, but mass production did not become available until World War II with the invention of vacuum-formed plastic maps, and computerized machining to create molds efficiently. Machining is also used to create large custom models from substrates such as high-density foam, and can even color them based on aerial photography by placing an inkjet printhead on the machining device. The advent of 3D printing has introduced a much more economical means to produce raised-relief maps, although most 3D printers are too small to efficiently produce large dioramas. [18]

Rendering

Upright=1.3STL 3D model of Penang Island terrain based on ASTER Global DEM data Penang island.stl
Upright=1.3STL 3D model of Penang Island terrain based on ASTER Global DEM data

Terrain rendering covers a variety of methods of depicting real-world or imaginary world surfaces. Most common terrain rendering is the depiction of Earth's surface. It is used in various applications to give an observer a frame of reference. It is also often used in combination with rendering of non-terrain objects, such as trees, buildings, rivers, etc.

There are two major modes of terrain rendering: top-down and perspective rendering. Top-down terrain rendering has been known for centuries in the way of cartographic maps. Perspective terrain rendering has also been known for quite some time. However, only with the advent of computers and computer graphics perspective rendering has become mainstream.

Structure

A landscape rendered in Outerra Outerra (PC) screenshots (35277781514).jpg
A landscape rendered in Outerra

A typical terrain rendering application consists of a terrain database, a central processing unit (CPU), a dedicated graphics processing unit (GPU), and a display. A software application is configured to start at initial location in the world space. The output of the application is screen space representation of the real world on a display. The software application uses the CPU to identify and load terrain data corresponding to initial location from the terrain database, then applies the required transformations to build a mesh of points that can be rendered by the GPU, which completes geometrical transformations, creating screen space objects (such as polygons) that create a picture closely resembling the location of the real world.

Texture

There are a number of ways to texture the terrain surface. Some applications benefit from using artificial textures, such as elevation coloring, checkerboard, or other generic textures. Some applications attempt to recreate the real-world surface to the best possible representation using aerial photography and satellite imagery.

In video games, texture splatting is used to texture the terrain surface.

Generation

There are a great variety of methods to generate terrain surfaces. The main problem solved by all these methods is managing number of processed and rendered polygons. It is possible to create a very detailed picture of the world using billions of data points. However such applications are limited to static pictures. Most uses of terrain rendering are moving images, which require the software application to make decisions on how to simplify (by discarding or approximating) source terrain data. Virtually all terrain rendering applications use level of detail to manage number of data points processed by CPU and GPU. There are several modern algorithms for terrain surfaces generating. [19] [20] [21] [22]

Applications

Terrain rendering is widely used in computer games to represent both Earth's surface and imaginary worlds. Some games also have terrain deformation (or deformable terrain).

One important application of terrain rendering is in synthetic vision systems. Pilots flying aircraft benefit greatly from the ability to see terrain surface at all times regardless of conditions outside the aircraft.

Skeletal, structural, or break lines

Emphasizes hydrological drainage divide and watershed streams.

Forums and associations

Portrayal of relief is especially important in mountainous regions. The Commission on Mountain Cartography of the International Cartographic Association is the best-known forum for discussion of theory and techniques for mapping these regions.

See also

Related Research Articles

<span class="mw-page-title-main">Rendering (computer graphics)</span> Process of generating an image from a model

Rendering is the process of generating a photorealistic or non-photorealistic image from input data such as 3D models. The word "rendering" originally meant the task performed by an artist when depicting a real or imaginary thing. Today, to "render" commonly means to generate an image or video from a precise description using a computer program.

<span class="mw-page-title-main">Cartography</span> Study and practice of making maps

Cartography is the study and practice of making and using maps. Combining science, aesthetics and technique, cartography builds on the premise that reality can be modeled in ways that communicate spatial information effectively.

<span class="mw-page-title-main">Geographic information system</span> System to capture, manage, and present geographic data

A geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database; however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.

<span class="mw-page-title-main">Digital elevation model</span> 3D computer-generated imagery and measurements of terrain

A digital elevation model (DEM) or digital surface model (DSM) is a 3D computer graphics representation of elevation data to represent terrain or overlaying objects, commonly of a planet, moon, or asteroid. A "global DEM" refers to a discrete global grid. DEMs are used often in geographic information systems (GIS), and are the most common basis for digitally produced relief maps. A digital terrain model (DTM) represents specifically the ground surface while DEM and DSM may represent tree top canopy or building roofs.

<span class="mw-page-title-main">Topography</span> Study of the forms of land surfaces

Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the landforms and features themselves, or a description or depiction in maps.

<span class="mw-page-title-main">Texture mapping</span> Method of defining surface detail on a computer-generated graphic or 3D model

Texture mapping is a method for mapping a texture on a computer-generated graphic. "Texture" in this context can be high frequency detail, surface texture, or color.

<span class="mw-page-title-main">Scientific visualization</span> Interdisciplinary branch of science concerned with presenting scientific data visually

Scientific visualization is an interdisciplinary branch of science concerned with the visualization of scientific phenomena. It is also considered a subset of computer graphics, a branch of computer science. The purpose of scientific visualization is to graphically illustrate scientific data to enable scientists to understand, illustrate, and glean insight from their data. Research into how people read and misread various types of visualizations is helping to determine what types and features of visualizations are most understandable and effective in conveying information.

<span class="mw-page-title-main">Volume rendering</span> Representing a 3D-modeled object or dataset as a 2D projection

In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.

<span class="mw-page-title-main">Lightmap</span> Data structure used in lightmapping

A lightmap is a data structure used in lightmapping, a form of surface caching in which the brightness of surfaces in a virtual scene is pre-calculated and stored in texture maps for later use. Lightmaps are most commonly applied to static objects in applications that use real-time 3D computer graphics, such as video games, in order to provide lighting effects such as global illumination at a relatively low computational cost.

<span class="mw-page-title-main">Subsurface scattering</span> Mechanism of light transport

Subsurface scattering (SSS), also known as subsurface light transport (SSLT), is a mechanism of light transport in which light that penetrates the surface of a translucent object is scattered by interacting with the material and exits the surface potentially at a different point. Light generally penetrates the surface and gets scattered a number of times at irregular angles inside the material before passing back out of the material at a different angle than it would have had if it had been reflected directly off the surface.

In computer graphics, per-pixel lighting refers to any technique for lighting an image or scene that calculates illumination for each pixel on a rendered image. This is in contrast to other popular methods of lighting such as vertex lighting, which calculates illumination at each vertex of a 3D model and then interpolates the resulting values over the model's faces to calculate the final per-pixel color values.

<span class="mw-page-title-main">Heightmap</span> Type of raster image in computer graphics

In computer graphics, a heightmap or heightfield is a raster image used mainly as Discrete Global Grid in secondary elevation modeling. Each pixel stores values, such as surface elevation data, for display in 3D computer graphics. A heightmap can be used in bump mapping to calculate where this 3D data would create shadow in a material, in displacement mapping to displace the actual geometric position of points over the textured surface, or for terrain where the heightmap is converted into a 3D mesh.

<span class="mw-page-title-main">3D rendering</span> Process of converting 3D scenes into 2D images

3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles.

Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources, models, shading techniques, and effects to suit the needs of each application.

<span class="mw-page-title-main">Erwin Raisz</span> Hungarian-born American cartographer

Erwin Raisz was a Hungarian-born American cartographer, best known for his physiographic maps of landforms.

<span class="mw-page-title-main">Hypsometric tints</span> Use of color to mark elevation in a map

Hypsometric tints are colors placed between contour lines to indicate elevation. These tints are shown as bands of color in a graduated scheme or as a color scheme applied to contour lines themselves; either method is considered a type of Isarithmic map. Hypsometric tinting of maps and globes is often accompanied by a similar method of bathymetric tinting to convey differences in water depth.

<span class="mw-page-title-main">Hachure map</span> Mode of representing relief on a map

Hachures are an older mode of representing relief. They show orientation of slope, and by their thickness and overall density they provide a general sense of steepness. Being non-numeric, they are less useful to a scientific survey than contours, but can successfully communicate quite specific shapes of terrain. They are a form of shading, although different from the one used in shaded maps.

<span class="mw-page-title-main">Computer graphics</span> Graphics created using computers

Computer graphics deals with generating images and art with the aid of computers. Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of computer science research.

This is a glossary of terms relating to computer graphics.

<span class="mw-page-title-main">Physically based rendering</span> Computer graphics technique

Physically based rendering (PBR) is a computer graphics approach that seeks to render images in a way that models the lights and surfaces with optics in the real world. It is often referred to as "Physically Based Lighting" or "Physically Based Shading". Many PBR pipelines aim to achieve photorealism. Feasible and quick approximations of the bidirectional reflectance distribution function and rendering equation are of mathematical importance in this field. Photogrammetry may be used to help discover and encode accurate optical properties of materials. PBR principles may be implemented in real-time applications using Shaders or offline applications using ray tracing or path tracing.

References

  1. Lobeck, A.K. (1921) A Physiographic Diagram of the United States, A.J. Nystrom & Co., digital scan at David Rumsey Map Collection, List No.7129.000
  2. 1 2 3 Raisz, Erwin (1948). General Cartography (2nd ed.). McGraw-Hill. pp. 103–123.
  3. Jenny, Bernhard; Patterson, Tom (2007). "Introducing Plan Oblique Relief" (PDF). Cartographic Perspectives (57): 21–40. doi:10.14714/CP57.279.
  4. Swisstopo, Conventional Signs Archived 2008-05-28 at the Wayback Machine .
  5. Fundamentals of Cartography. Misra R. P. and A. Ramesh. Concept Publishing Company. 1989. pp. 389-390
  6. Patrick Kennelly & A. Jon Kimerling (2001) Modifications of Tanaka's Illuminated Contour Method, Cartography and Geographic Information Science, 28:2, 111-123.
  7. "RELIEF (TERRAIN) DEPICTION." UNBC GIS LAB: GIS & Remote Sensing. University of Northern British Columbia, n.d. Web. 28 Sept. 2013.
  8. Eduard Imhof (2007-06-01). Cartographic relief presentation . Esri Pr. ISBN   978-1-58948-026-1.
  9. Jenny, Bernhard; Hurni, Lorenz (2006). "Swiss-Style Colour Relief Shading Modulated by Elevation and by Exposure to Illumination". The Cartographic Journal. 43 (3): 198–207. Bibcode:2006CartJ..43..198J. doi:10.1179/000870406X158164.
  10. Tom Patterson, "See the light: How to make illuminated shaded relief in Photoshop 6.0," http://www.shadedrelief.com/illumination/ (accessed 30 October 2017).
  11. Huffman, Daniel P. (2014) Shaded Relief in Blender, 9th ICA Mountain Cartography Workshop
  12. Kennelly, J., & Stewart, J. (2006). A Uniform Sky Illumination Model to Enhance Shading of Terrain and Urban Areas. Cartography and Geographic Information Science, 33(1), 21–36. https://doi.org/10.1559/152304006777323118.
  13. Blinn, James F. "Simulation of Wrinkled Surfaces", Computer Graphics, Vol. 12 (3), pp. 286-292 SIGGRAPH-ACM (August 1978)
  14. Patterson, Tom (2002). "Getting Real: Reflecting on the New Look of National Park Service Maps". Cartographic Perspectives (43): 43–56. doi: 10.14714/CP43.536 .
  15. Nighbert, Jeffrey (2000). "Using Remote Sensing Imagery to Texturize Layer Tinted Relief". Cartographic Perspectives (36): 93. doi:10.14714/CP36.827.
  16. Patterson, Tom., "Resolution bumping GTOPO30 in Photoshop: How to Make High-Mountains More Legible," http://www.shadedrelief.com/bumping/bumping.html (accessed 24 September 2012)
  17. Patterson, Tom (2005). "Looking Closer: A Guide to Making Bird's-eye Views of National Park Service Cultural and Historical Sites". Cartographic Perspectives (52): 59–75. doi: 10.14714/CP52.379 .
  18. Adams, Aaron (July 2019). A Comparative Usability Assessment of Augmented Reality 3-D Printed Terrain Models and 2-D Topographic Maps. New Mexico State University. Retrieved 17 April 2022 via ProQuest.{{cite book}}: CS1 maint: location missing publisher (link)
  19. Stewart J. (1999), “Fast Horizon Computation at All Points of a Terrain With Visibility and Shading Applications”, IEEE Transactions on visualization and computer graphics 4(1).
  20. Bashkov E., Zori S., Suvorova I. (2000), “Modern Methods of Environment Visual Simulation”, In Simulationstechnik, 14. Symposium in Hamburg SCS, pp. 509-514. Europe BVBA, Ghent, Belgium,
  21. Bashkov E.A., Zori S.A. (2001), “Visual Simulation of an Earth Surface by Fast Horizon Computation Algorithm”, In Simulation und Visualisierung, pp. 203-215. Institut fur Simulation und Graphik, Magdeburg, Deutschland
  22. Ruzinoor Che Mat & Norani Nordin, 'Silhouette Rendering Algorithm Using Vectorisation Technique from Kedah Topography Maps', Proceeding 2nd National Conference on Computer Graphics and Multimedia (CoGRAMM’04), Selangor, December 2004. https://s3.amazonaws.com/academia.edu.documents/30969013/449317633605827_1.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1505553957&Signature=7GA1T7nvGM5BOhLQ0OCELIKVYbY%3D&response-content-disposition=inline%3B%20filename%3D3D_Silhouette_Rendering_Algorithms_using.pdf%5B‍%5D