Liquid air cycle engine

Last updated

A liquid air cycle engine (LACE) is a type of spacecraft propulsion engine that attempts to increase its efficiency by gathering part of its oxidizer from the atmosphere. A liquid air cycle engine uses liquid hydrogen (LH2) fuel to liquefy the air.

Contents

In a liquid oxygen/liquid hydrogen rocket, the liquid oxygen (LOX) needed for combustion is the majority of the weight of the spacecraft on lift-off, so if some of this can be collected from the air on the way, it might dramatically lower the take-off weight of the spacecraft.

LACE was studied to some extent in the USA during the late 1950s and early 1960s, and by late 1960 Marquardt had a testbed system running. However, as NASA moved to ballistic capsules during Project Mercury, funding for research into winged vehicles slowly disappeared, and LACE work along with it.

LACE was also the basis of the engines on the British Aerospace HOTOL design of the 1980s, but this did not progress beyond studies.[ dubious ][ citation needed ]

Principle of operation

Conceptually, LACE works by compressing and then quickly liquefying the air. Compression is achieved through the ram-air effect in an intake similar to that found on a high-speed aircraft like Concorde, where intake ramps create shock waves that compress the air. The LACE design then blows the compressed air over a heat exchanger, in which the liquid hydrogen fuel is flowing. This rapidly cools the air, and the various constituents quickly liquefy. By careful mechanical arrangement the liquid oxygen can be removed from the other parts of the air, notably water, nitrogen and carbon dioxide, at which point the liquid oxygen can be fed into the engine as usual. It will be seen that heat-exchanger limitations always cause this system to run with a hydrogen/air ratio much richer than stoichiometric with a consequent penalty in performance [1] and thus some hydrogen is dumped overboard.

Advantages and disadvantages

The use of a winged launch vehicle allows using lift rather than thrust to overcome gravity, which greatly reduces gravity losses. On the other hand, the reduced gravity losses come at the price of much higher aerodynamic drag and aerodynamic heating due to the need to stay much deeper within the atmosphere than a pure rocket would during the boost phase.

In order to appreciably reduce the mass of the oxygen carried at launch, a LACE vehicle needs to spend more time in the lower atmosphere to collect enough oxygen to supply the engines during the remainder of the launch. This leads to greatly increased vehicle heating and drag losses, which therefore increases fuel consumption to offset the drag losses and the additional mass of the thermal protection system. This increased fuel consumption offsets somewhat the savings in oxidizer mass; these losses are in turn offset by the higher specific impulse, Isp, of the air-breathing engine. Thus, the engineering trade-offs involved are quite complex, and highly sensitive to the design assumptions made. [2]

Other issues are introduced by the relative material and logistical properties of LOx versus LH2. LOx is quite cheap; LH2 is nearly two orders of magnitude more expensive. [3] LOx is dense (1.141 kg/L), whereas LH2 has a very low density (0.0678 kg/L) and is therefore very bulky. (The extreme bulkiness of the LH2 tankage tends to increase vehicle drag by increasing the vehicle's frontal area.) Finally, LOx tanks are relatively lightweight and fairly cheap, while the deep cryogenic nature and extreme physical properties of LH2 mandate that LH2 tanks and plumbing must be large and use heavy, expensive, exotic materials and insulation. Hence, much as the costs of using LH2 rather than a hydrocarbon fuel may well outweigh the Isp benefit of using LH2 in a single-stage-to-orbit rocket, the costs of using more LH2 as a propellant and air-liquefaction coolant in LACE may well outweigh the benefits gained by not needing to carry as much LOx on board.

Most significantly, the LACE system is far heavier than a pure rocket engine having the same thrust (air-breathing engines of almost all types have relatively poor thrust-to-weight ratios compared to rockets), and the performance of launch vehicles of all types is particularly affected by increases in vehicle dry mass (such as engines) that must be carried all the way to orbit, as opposed to oxidizer mass that would be burnt off over the course of the flight. Moreover, the lower thrust-to-weight ratio of an air-breathing engine as compared to a rocket significantly decreases the launch vehicle's maximum possible acceleration, and increases gravity losses since more time must be spent to accelerate to orbital velocity. Also, the higher inlet and airframe drag losses of a lifting, air-breathing vehicle launch trajectory as compared to a pure rocket on a ballistic launch trajectory introduces an additional penalty term into the rocket equation known as the air-breather's burden. [4] This term implies that unless the lift-to-drag ratio (L/D) and the acceleration of the vehicle as compared to gravity (a/g) are both implausibly large for a hypersonic air-breathing vehicle, the advantages of the higher Isp of the air-breathing engine and the savings in LOx mass are largely lost.

Thus, the advantages, or disadvantages, of the LACE design continue to be a matter of some debate.

History

LACE was studied to some extent in the United States of America during the late 1950s and early 1960s, where it was seen as a "natural" fit for a winged spacecraft project known as the Aerospaceplane. At the time the concept was known as LACES, for Liquid Air Collection Engine System. The liquified air and some of the hydrogen is then pumped directly into the engine for burning.

When it was demonstrated that it was relatively easy to separate the oxygen from the other components of air, mostly nitrogen and carbon dioxide, a new concept emerged as ACES for Air Collection and Enrichment System. This leaves the problem of what to do with the leftover gasses. ACES injected the nitrogen into a ramjet engine, using it as additional working fluid while the engine was running on air and the liquid oxygen was being stored. As the aircraft climbed and the atmosphere thinned, the lack of air was offset by increasing the flow of oxygen from the tanks. This makes ACES an ejector ramjet (or ramrocket) as opposed to the pure rocket LACE design.

Both Marquardt Corporation and General Dynamics were involved in the LACES research. However, as NASA moved to ballistic capsules during Project Mercury, funding for research into winged vehicles slowly disappeared, and ACES along with it.

See also

Related Research Articles

<span class="mw-page-title-main">British Aerospace HOTOL</span> UK Spaceplane design of 1980s

HOTOL, for Horizontal Take-Off and Landing, was a 1980s British design for a single-stage-to-orbit (SSTO) spaceplane that was to be powered by an airbreathing jet engine. Development was being conducted by a consortium led by Rolls-Royce and British Aerospace (BAe).

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<span class="mw-page-title-main">Single-stage-to-orbit</span> Launch system that only uses one rocket stage

A single-stage-to-orbit (SSTO) vehicle reaches orbit from the surface of a body using only propellants and fluids and without expending tanks, engines, or other major hardware. The term usually, but not exclusively, refers to reusable vehicles. To date, no Earth-launched SSTO launch vehicles have ever been flown; orbital launches from Earth have been performed by either fully or partially expendable multi-stage rockets.

Specific impulse is a measure of how efficiently a reaction mass engine creates thrust. For engines whose reaction mass is only the fuel they carry, specific impulse is exactly proportional to the effective exhaust gas velocity.

A tripropellant rocket is a rocket that uses three propellants, as opposed to the more common bipropellant rocket or monopropellant rocket designs, which use two or one propellants, respectively. Tripropellant systems can be designed to have high specific impulse and have been investigated for single-stage-to-orbit designs. While tripropellant engines have been tested by Rocketdyne and Energomash, no tripropellant rocket has been flown.

<span class="mw-page-title-main">Centaur (rocket stage)</span> Family of rocket stages which can be used as a space tug

The Centaur is a family of rocket propelled upper stages produced by U.S. launch service provider United Launch Alliance, with one main active version and one version under development. The 3.05 m (10.0 ft) diameter Common Centaur/Centaur III flies as the upper stage of the Atlas V launch vehicle, and the 5.4 m (18 ft) diameter Centaur V is being developed as the upper stage of ULA's new Vulcan rocket. Centaur was the first rocket stage to use liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, a high-energy combination that is ideal for upper stages but has significant handling difficulties.

Air-augmented rockets use the supersonic exhaust of some kind of rocket engine to further compress air collected by ram effect during flight to use as additional working mass, leading to greater effective thrust for any given amount of fuel than either the rocket or a ramjet alone.

Delta-v, symbolized as v and pronounced delta-vee, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft.

<span class="mw-page-title-main">Liquid oxygen</span> One of the physical forms of elemental oxygen

Liquid oxygen—abbreviated LOx, LOX, LOXygen or Lox in the aerospace, submarine and gas industries—is the liquid form of molecular oxygen. It was used as the oxidizer in the first liquid-fueled rocket invented in 1926 by Robert H. Goddard, an application which has continued to the present.

<span class="mw-page-title-main">RP-1</span> Highly refined form of kerosene used as rocket fuel

RP-1 (alternatively, Rocket Propellant-1 or Refined Petroleum-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel. RP-1 provides a lower specific impulse than liquid hydrogen (LH2), but is cheaper, is stable at room temperature, and presents a lower explosion hazard. RP-1 is far denser than LH2, giving it a higher energy density (though its specific energy is lower). RP-1 also has a fraction of the toxicity and carcinogenic hazards of hydrazine, another room-temperature liquid fuel.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid propellants. Gaseous propellants may also be used but are not common because of their low density and difficulty with common pumping methods. Liquids are desirable because they have a reasonably high density and high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low. The rocket propellants are usually pumped into the combustion chamber with a lightweight centrifugal turbopump, although some aerospace companies have found ways to use electric pumps with batteries, allowing the propellants to be kept under low pressure. This permits the use of low-mass propellant tanks that do not need to resist the high pressures needed to store significant amounts of gasses, resulting in a low mass ratio for the rocket.

<span class="mw-page-title-main">S-II</span> Second stage of the Saturn V, built by North American Aviation

The S-II was the second stage of the Saturn V rocket. It was built by North American Aviation. Using liquid hydrogen (LH2) and liquid oxygen (LOX) it had five J-2 engines in a quincunx pattern. The second stage accelerated the Saturn V through the upper atmosphere with 1,000,000 pounds-force (4.4 MN) of thrust.

<span class="mw-page-title-main">SABRE (rocket engine)</span> Synergetic Air Breathing Rocket Engine - a hybrid ramjet and rocket engine

SABRE is a concept under development by Reaction Engines Limited for a hypersonic precooled hybrid air-breathing rocket engine. The engine is being designed to achieve single-stage-to-orbit capability, propelling the proposed Skylon spaceplane to low Earth orbit. SABRE is an evolution of Alan Bond's series of LACE-like designs that started in the early/mid-1980s for the HOTOL project.

<span class="mw-page-title-main">Space Shuttle external tank</span> Component of the Space Shuttle launch vehicle

The Space Shuttle external tank (ET) was the component of the Space Shuttle launch vehicle that contained the liquid hydrogen fuel and liquid oxygen oxidizer. During lift-off and ascent it supplied the fuel and oxidizer under pressure to the three RS-25 main engines in the orbiter. The ET was jettisoned just over 10 seconds after main engine cut-off (MECO) and it re-entered the Earth's atmosphere. Unlike the Solid Rocket Boosters, external tanks were not re-used. They broke up before impact in the Indian Ocean, away from shipping lanes and were not recovered.

The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.

The precooled jet engine is a concept that enables jet engines with turbomachinery, as opposed to ramjets, to be used at high speeds. Precooling restores some or all of the performance degradation of the engine compressor, as well as that of the complete gas generator, which would otherwise prevent flight with high ram temperatures.

<span class="mw-page-title-main">Cryogenic rocket engine</span> Type of rocket engine which uses liquid fuel stored at very low temperatures

A cryogenic rocket engine is a rocket engine that uses a cryogenic fuel and oxidizer; that is, both its fuel and oxidizer are gases which have been liquefied and are stored at very low temperatures. These highly efficient engines were first flown on the US Atlas-Centaur and were one of the main factors of NASA's success in reaching the Moon by the Saturn V rocket.

Douglas Aircraft's SASSTO, short for "Saturn Application Single Stage to Orbit", was a single-stage-to-orbit (SSTO) reusable launch system designed by Philip Bono's team in 1967. SASSTO was a study in minimalist designs, a launcher with the specific intent of repeatedly placing a Gemini capsule in orbit for the lowest possible cost. The SASSTO booster was based on the layout of the S-IVB upper stage from the Saturn family, modified with a plug nozzle. Although the SASSTO design was never followed up at Douglas, it is widely referred to in newer studies for SSTO launchers, notably the MBB "Beta" design, which was largely an updated version of SASSTO.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

<span class="mw-page-title-main">SpaceX Raptor</span> SpaceX family of liquid-fuel rocket engines

Raptor is a family of full-flow staged-combustion-cycle rocket engines developed and manufactured by SpaceX for use on the SpaceX Starship. The engine is powered by cryogenic liquid methane and liquid oxygen ("methalox"), as opposed to the RP-1 and liquid oxygen ("kerolox") combination used in SpaceX's earlier Merlin and Kestrel rocket engines. The Raptor engine has about triple the thrust of SpaceX's Merlin 1D engine, which powers the Falcon 9 and Falcon Heavy launch vehicles.

References

  1. "Archived copy" (PDF). Archived from the original (PDF) on 2015-02-13. Retrieved 2019-05-27.{{cite web}}: CS1 maint: archived copy as title (link)
  2. Orloff, Benjamin. A Comparative Analysis of Singe-State-To-Orbit Rocket and Air-Breathing Vehicles (PDF). AFIT/GAE/ENY/06-J13. Archived (PDF) from the original on June 4, 2011.
  3. "LOX/LH2: Properties and Prices". Archived from the original on March 13, 2002.
  4. "Liquid Air Cycle Rocket Equation, Henry Spencer Comment".