List of important publications in cryptography

Last updated

This is a list of important publications in cryptography, organized by field.

Contents

Some reasons why a particular publication might be regarded as important:

Cryptanalysis

The index of coincidence and its applications in cryptology

Description: Presented the index of coincidence method for codebreaking; number 22 in the Riverbank Publications series.

Treatise on the Enigma

Description: The breaking of the Enigma.

The Codebreakers: The Story of Secret Writing

Description: Almost nothing had been published in cryptography in several decades and very few non-government researchers were thinking about it. The Codebreakers, a popular and non academic book, made many more people aware and contains a lot of technical information, although it requires careful reading to extract it. Its 1967 appearance was followed by the appearance of many papers over the next few years.

Differential Cryptanalysis of DES-like Cryptosystems

Description: The method of differential cryptanalysis.

A new method for known plaintext attack of FEAL cipher

Description: The method of linear cryptanalysis.

Theory

Communication Theory of Secrecy Systems

Description: Information theory based analysis of cryptography. The original form of this paper was a confidential Bell Labs report from 1945, not the one published.

Probabilistic Encryption

Description: The paper provides a rigorous basis to encryption (e.g., partial information) and shows that it possible to equate the slightest cryptanalysis to solve a pure math problem. Second, it introduces the notion of computational indistinguishability.

Proofs that Yield Nothing But their Validity or All Languages in NP have Zero-Knowledge Proofs

Description: This paper explains how to construct a zero-knowledge proof system for any language in NP.

Private key cryptography

Cryptographic Coding for Data-Bank Privacy

Description: Feistel ciphers are a form of cipher of which DES is the most important. It would be hard to overestimate the importance of either Feistel or DES. Feistel pushed a transition from stream ciphers to block ciphers. Although most ciphers operate on streams, most of the important ciphers today are block ciphers at their core.

Data Encryption Standard

Description: DES is not only one of the most widely deployed ciphers in the world but has had a profound impact on the development of cryptography. Roughly a generation of cryptographers devoted much of their time to attacking and improving DES.

Public Key Cryptography

New directions in cryptography

Description: This paper suggested public key cryptography and presented Diffie–Hellman key exchange. For more information about this work see: W.Diffie, M.E.Hellman, "Privacy and Authentication: An Introduction to Cryptography", in Proc. IEEE, Vol 67(3) Mar 1979, pp 397–427.

On the Signature Reblocking Problem in Public Key Cryptography

Description: In this paper (along with Loren M. Kohnfelder,"Using Certificates for Key Distribution in a Public-Key Cryptosystem", MIT Technical report 19 May 1978), Kohnfelder introduced certificates (signed messages containing public keys) which are the heart of all modern key management systems.

Secure Communications Over Insecure Channels

Description: This paper introduced a branch of public key cryptography, known as public key distribution systems. Merkle's work predated "New directions in cryptography" though it was published after it. The Diffie–Hellman key exchange is an implementation of such a Merkle system. Hellman himself has argued [1] that a more correct name would be Diffie–Hellman–Merkle key exchange.

A Method for Obtaining Digital Signatures and Public Key Cryptosystems

Description: The RSA encryption method. The first public-key encryption method.

How to Share a Secret

Description: A safe method for sharing a secret.

On the security of public key protocols

Description: Introduced the adversarial model against which almost all cryptographic protocols are judged.

Protocols

Using encryption for authentication in large networks of computers

Description: This paper introduced the basic ideas of cryptographic protocols and showed how both secret-key and public-key encryption could be used to achieve authentication.

Kerberos

Description: The Kerberos authentication protocol, which allows individuals communicating over an insecure network to prove their identity to one another in a secure and practical manner.

A Protocol for Packet Network Interconnection

A Dynamic Network Architecture

Description: Network software in distributed systems.

See also

Related Research Articles

<span class="mw-page-title-main">Diffie–Hellman key exchange</span> Method of exchanging cryptographic keys

Diffie–Hellman key exchange is a mathematical method of securely exchanging cryptographic keys over a public channel and was one of the first public-key protocols as conceived by Ralph Merkle and named after Whitfield Diffie and Martin Hellman. DH is one of the earliest practical examples of public key exchange implemented within the field of cryptography. Published in 1976 by Diffie and Hellman, this is the earliest publicly known work that proposed the idea of a private key and a corresponding public key.

<span class="mw-page-title-main">Data Encryption Standard</span> Early unclassified symmetric-key block cipher

The Data Encryption Standard is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography.

Kerberos is a computer-network authentication protocol that works on the basis of tickets to allow nodes communicating over a non-secure network to prove their identity to one another in a secure manner. Its designers aimed it primarily at a client–server model, and it provides mutual authentication—both the user and the server verify each other's identity. Kerberos protocol messages are protected against eavesdropping and replay attacks.

<span class="mw-page-title-main">Public-key cryptography</span> Cryptographic system with public and private keys

Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security.

<span class="mw-page-title-main">Ralph Merkle</span> American cryptographer

Ralph C. Merkle is an American computer scientist and mathematician. He is one of the inventors of public-key cryptography, the inventor of cryptographic hashing, and more recently a researcher and speaker on cryonics.

<span class="mw-page-title-main">Symmetric-key algorithm</span> Algorithm

Symmetric-key algorithms are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key encryption. However, symmetric-key encryption algorithms are usually better for bulk encryption. With exception of the one-time pad they have a smaller key size, which means less storage space and faster transmission. Due to this, asymmetric-key encryption is often used to exchange the secret key for symmetric-key encryption.

In cryptography, the ElGamal encryption system is an asymmetric key encryption algorithm for public-key cryptography which is based on the Diffie–Hellman key exchange. It was described by Taher Elgamal in 1985. ElGamal encryption is used in the free GNU Privacy Guard software, recent versions of PGP, and other cryptosystems. The Digital Signature Algorithm (DSA) is a variant of the ElGamal signature scheme, which should not be confused with ElGamal encryption.

Articles related to cryptography include:

<span class="mw-page-title-main">Martin Hellman</span> American cryptologist (born 1945)

Martin Edward Hellman is an American cryptologist and mathematician, best known for his involvement with public key cryptography in cooperation with Whitfield Diffie and Ralph Merkle. Hellman is a longtime contributor to the computer privacy debate, and has applied risk analysis to a potential failure of nuclear deterrence.

<span class="mw-page-title-main">Whitfield Diffie</span> American cryptographer (born 1944)

Bailey Whitfield 'Whit' Diffie, ForMemRS, is an American cryptographer and mathematician and one of the pioneers of public-key cryptography along with Martin Hellman and Ralph Merkle. Diffie and Hellman's 1976 paper New Directions in Cryptography introduced a radically new method of distributing cryptographic keys, that helped solve key distribution—a fundamental problem in cryptography. Their technique became known as Diffie–Hellman key exchange. The article stimulated the almost immediate public development of a new class of encryption algorithms, the asymmetric key algorithms.

Cryptography, the use of codes and ciphers to protect secrets, began thousands of years ago. Until recent decades, it has been the story of what might be called classical cryptography — that is, of methods of encryption that use pen and paper, or perhaps simple mechanical aids. In the early 20th century, the invention of complex mechanical and electromechanical machines, such as the Enigma rotor machine, provided more sophisticated and efficient means of encryption; and the subsequent introduction of electronics and computing has allowed elaborate schemes of still greater complexity, most of which are entirely unsuited to pen and paper.

<span class="mw-page-title-main">Key exchange</span> Cryptographic protocol enabling the sharing of a secret key over an insecure channel

Key exchange is a method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm.

In cryptography, Khufu and Khafre are two block ciphers designed by Ralph Merkle in 1989 while working at Xerox's Palo Alto Research Center. Along with Snefru, a cryptographic hash function, the ciphers were named after the Egyptian Pharaohs Khufu, Khafre and Sneferu.

In cryptography, forward secrecy (FS), also known as perfect forward secrecy (PFS), is a feature of specific key-agreement protocols that gives assurances that session keys will not be compromised even if long-term secrets used in the session key exchange are compromised. For HTTPS, the long-term secret is typically the private key of the server. Forward secrecy protects past sessions against future compromises of keys or passwords. By generating a unique session key for every session a user initiates, the compromise of a single session key will not affect any data other than that exchanged in the specific session protected by that particular key. This by itself is not sufficient for forward secrecy which additionally requires that a long-term secret compromise does not affect the security of past session keys.

Strong cryptography or cryptographically strong are general terms used to designate the cryptographic algorithms that, when used correctly, provide a very high level of protection against any eavesdropper, including the government agencies. There is no precise definition of the boundary line between the strong cryptography and (breakable) weak cryptography, as this border constantly shifts due to improvements in hardware and cryptanalysis techniques. These improvements eventually place the capabilities once available only to the NSA within the reach of a skilled individual, so in practice there are only two levels of cryptographic security, "cryptography that will stop your kid sister from reading your files, and cryptography that will stop major governments from reading your files".

The Diffie–Hellman problem (DHP) is a mathematical problem first proposed by Whitfield Diffie and Martin Hellman in the context of cryptography. The motivation for this problem is that many security systems use one-way functions: mathematical operations that are fast to compute, but hard to reverse. For example, they enable encrypting a message, but reversing the encryption is difficult. If solving the DHP were easy, these systems would be easily broken.

Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions are currently important candidates for post-quantum cryptography. Unlike more widely used and known public-key schemes such as the RSA, Diffie-Hellman or elliptic-curve cryptosystems — which could, theoretically, be defeated using Shor's algorithm on a quantum computer — some lattice-based constructions appear to be resistant to attack by both classical and quantum computers. Furthermore, many lattice-based constructions are considered to be secure under the assumption that certain well-studied computational lattice problems cannot be solved efficiently.

<span class="mw-page-title-main">Cryptography</span> Practice and study of secure communication techniques

Cryptography, or cryptology, is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications.

The following outline is provided as an overview of and topical guide to cryptography:

In cryptography, post-quantum cryptography (PQC) refers to cryptographic algorithms that are thought to be secure against a cryptanalytic attack by a quantum computer. The problem with currently popular algorithms is that their security relies on one of three hard mathematical problems: the integer factorization problem, the discrete logarithm problem or the elliptic-curve discrete logarithm problem. All of these problems could be easily solved on a sufficiently powerful quantum computer running Shor's algorithm.

References

  1. "Hellman: Authentication at every access point". Archived from the original on 2008-10-10. Retrieved 2009-10-03.