M-Module

Last updated

M-Modules are a mezzanine (computer hardware) standard mainly used in industrial computers. Being mezzanines, they are always plugged on a carrier printed circuit board (PCB) that supports this format. The modules communicate with their carrier over a dedicated bus, and can have all kinds of special functions.

Contents

M-Modules are standardized as ANSI/VITA 12-1996 expansion cards and are especially suited for adding any kind of real-world I/O to a system in a flexible way. There are modular I/O extensions for all types of industrial computers, from embedded systems up to high-end workstations. The M-Module Interface – a fast asynchronous parallel interface – offers sophisticated functions like 32-bit data bus, burst transfers up to 100 MB/s, DMA and trigger capabilities. M-Modules also offer direct front-panel connection rather than requiring a separate adapter panel with ribbon-cable connections. This provides a clean path for sensitive signals without loss of data or signal quality – using, for example, shielded D-Sub connectors and coaxial cables.

Overview

The mezzanine approach to placing multiple functions in a single card slot has been around for a long time both in proprietary and open standard forms. Valid arguments can be put forth for both of these approaches. The M-Module is one open standard that is gaining increasing popularity for applications in the fields of analog and digital I/O, instrumentation, robotics, motion functions and fieldbuses. This standard was originally developed in Germany by MEN Mikro Elektronik for VMEbus applications and was soon expanded to support the CompactPCI bus as well. It has been embraced as ANSI/VITA 12-1996.

M-modules-measurement-spec.jpg

In addition to the single wide form shown, M-Modules can be developed in double, triple and quadruple wide configurations. Because of the standard's genesis in the VME world it is sized such that 4 fit in a 6U module and 2 in a 3U module. Conveniently, because of the way other backplane standards have evolved, 4 units easily fit the front panel space in VXI and 6U cPCI/PXI while 2 will fit in the front panel space of 3U cPCI/PXI and up to 8 will fit in a 1U LXI rack mount carrier.

At the present time a number of instruments are available in the M-Module form factor in the following categories:

A significant advantage to the M-Module is that it has a relatively straight forward set of electrical and mechanical specifications. This enables an engineer to design a function that might be required without having to become an expert on VXI, PXI or LXI as carriers are available to allow the design to be ported to the backplane or bus of the test system in use.

Supporting the standard

As with any mezzanine card, a means must be provided through which the card may be adapted to a backplane or higher level interface. Such a device is generally referred to as a carrier. These come in two types: non-intelligent and intelligent. The functions performed by the former include the simpler functions such as mounting and providing power as well as the more complex such as providing translation between bus types, protocols, routing of triggers and interrupts and making each mezzanine appear as a separate instrument to the host backplane. Intelligent carriers will generally perform all of the functions of the non-intelligent plus perform pre or post processing of data, allow the combination of multiple instruments into composite instruments that then may be controlled at a higher level, and perform translation of commands from older instruments so as to facilitate replacement of Legacy instruments.

Of equal or greater importance in the support of the mezzanine is the software. The majority of the M-Module instrument types referenced above come with VXI/PXI Plug-and-Play or IVI drivers. However, a number of the more control oriented M-Modules are supported only with C drivers. Actions are underway that are described below which allow application of the Plug-and-Play drivers across multiple platforms.

Benefits of modularity

Perhaps the greatest advantage of an M-Module mezzanine instrument is the ability of both the vendor and the user to become "Platform Agnostic". From the vendor's perspective, it is only necessary to develop one instrument, say a Pulse Generator, and with the use of carriers he can produce the same product into VXI, PXI, VME, LXI and other applications. This greatly reduces development costs when compared to the development of pulse generators for multiple buses.

See also

Related Research Articles

<span class="mw-page-title-main">Eurocard (printed circuit board)</span> Standard for PCBs which may be interconnected in a rack mounted chassis

Eurocard is a European standard format for printed circuit board (PCB) cards that can be plugged together into a standard chassis which, in turn, can be mounted in a 19-inch rack. The chassis consists of a series of slotted card guides on the top and bottom, into which the cards are slid so they stand on end, like books on a shelf. At the spine of each card is one or more connectors which plug into mating connectors on a backplane that closes the rear of the chassis.

<span class="mw-page-title-main">Expansion card</span> Circuit board for connecting to a computer system to add functionality

In computing, an expansion card is a printed circuit board that can be inserted into an electrical connector, or expansion slot on a computer's motherboard to add functionality to a computer system. Sometimes the design of the computer's case and motherboard involves placing most of these slots onto a separate, removable card. Typically such cards are referred to as a riser card in part because they project upward from the board and allow expansion cards to be placed above and parallel to the motherboard.

<span class="mw-page-title-main">VMEbus</span> Computer bus standard physically based on Eurocard sizes

VMEbus is a computer bus standard, originally developed for the Motorola 68000 line of CPUs, but later widely used for many applications and standardized by the IEC as ANSI/IEEE 1014-1987. It is physically based on Eurocard sizes, mechanicals and connectors, but uses its own signalling system, which Eurocard does not define. It was first developed in 1981 and continues to see widespread use today.

Futurebus, or IEEE 896, is a computer bus standard, intended to replace all local bus connections in a computer, including the CPU, memory, plug-in cards and even, to some extent, LAN links between machines. The effort started in 1979 and didn't complete until 1987, and then immediately went into a redesign that lasted until 1994. By this point, implementation of a chip-set based on the standard lacked industry leadership. It has seen little real-world use, although custom implementations continue to be designed and used throughout industry.

<span class="mw-page-title-main">Single-board computer</span> Computer whose components are on a single printed circuit board

A single-board computer (SBC) is a complete computer built on a single circuit board, with microprocessor(s), memory, input/output (I/O) and other features required of a functional computer. Single-board computers are commonly made as demonstration or development systems, for educational systems, or for use as embedded computer controllers. Many types of home computers or portable computers integrate all their functions onto a single printed circuit board.

A PCI Mezzanine Card or PMC is a printed circuit board assembly manufactured to the IEEE P1386.1 standard. This standard combines the electrical characteristics of the PCI bus with the mechanical dimensions of the Common Mezzanine Card or CMC format.

<span class="mw-page-title-main">Electronic test equipment</span>

Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipment is essential to any serious work on electronics systems.

LAN eXtensions for Instrumentation (LXI) is a standard developed by the LXI Consortium, a consortium that maintains the LXI specification and promotes the LXI Standard. The LXI standard defines the communication protocols for instrumentation and data acquisition systems using Ethernet. Ethernet is a ubiquitous communication standard providing a versatile interface, the LXI standard describes how to use the Ethernet standards for test and measurement applications in a way that promotes simple interoperability between instruments. The LXI Consortium ensures LXI compliant instrumentation developed by various vendors works together with no communication or setup issues. The LXI Consortium ensures that the LXI standard complements other test and measurement control systems, such as GPIB and PXI systems.

<span class="mw-page-title-main">CompactPCI</span> Computer bus interconnect for industrial computers

CompactPCI is a computer bus interconnect for industrial computers, combining a Eurocard-type connector and PCI signaling and protocols. Boards are standardized to 3U or 6U sizes, and are typically interconnected via a passive backplane. The connector pin assignments are standardized by the PICMG US and PICMG Europe organizations. The connectors and the electrical rules allow for eight boards in a PCI segment. Multiple bus segments are allowed with bridges.

<span class="mw-page-title-main">VME eXtensions for Instrumentation</span>

VME eXtensions for instrumentation bus refers to standards for automated test based upon VMEbus. VXI defines additional bus lines for timing and triggering as well as mechanical requirements and standard protocols for configuration, message-based communication, multi-chassis extension, and other features. In 2004, the 2eVME extension was added to the VXI bus specification, giving it a maximum data rate of 160 MB/s.

<span class="mw-page-title-main">Automatic test equipment</span> Apparatus used in hardware testing that carries out a series of tests automatically

Automatic test equipment or automated test equipment (ATE) is any apparatus that performs tests on a device, known as the device under test (DUT), equipment under test (EUT) or unit under test (UUT), using automation to quickly perform measurements and evaluate the test results. An ATE can be a simple computer-controlled digital multimeter, or a complicated system containing dozens of complex test instruments capable of automatically testing and diagnosing faults in sophisticated electronic packaged parts or on wafer testing, including system on chips and integrated circuits.

Advanced Telecommunications Computing Architecture is the largest specification effort in the history of the PCI Industrial Computer Manufacturers Group (PICMG), with more than 100 companies participating. Known as AdvancedTCA, the official specification designation PICMG 3.x was ratified by the PICMG organization in December 2002. AdvancedTCA is targeted primarily to requirements for "carrier grade" communications equipment, but has recently expanded its reach into more ruggedized applications geared toward the military/aerospace industries as well. This series of specifications incorporates the latest trends in high speed interconnect technologies, next-generation processors, and improved Reliability, Availability and Serviceability (RAS).

<span class="mw-page-title-main">PCI eXtensions for Instrumentation</span>

PCI eXtensions for Instrumentation (PXI) is one of several modular electronic instrumentation platforms in current use. These platforms are used as a basis for building electronic test equipment, automation systems, and modular laboratory instruments. PXI is based on industry-Industry-standard computer buses and permits flexibility in building equipment. Often modules are fitted with custom software to manage the system.

Instrument control consists of connecting a desktop instrument to a computer and taking measurements.

<span class="mw-page-title-main">System on module</span> Board-level circuit that integrates a system function in a single module

A system on a module (SoM) is a board-level circuit that integrates a system function in a single module. It may integrate digital and analog functions on a single board. A typical application is in the area of embedded systems. Unlike a single-board computer, a SoM serves a special function like a system on a chip (SoC). The devices integrated in the SoM typically requires a high level of interconnection for reasons such as speed, timing, bus width etc.. There are benefits in building a SoM, as for SoC; one notable result is to reduce the cost of the base board or the main PCB. Two other major advantages of SoMs are design-reuse and that they can be integrated into many embedded computer applications.

<span class="mw-page-title-main">VPX</span> Standards for connecting components of a computer

VPX, also known as VITA 46, refers to a set of standards for connecting components of a computer, commonly used by defense contractors. Some are ANSI standards such as ANSI/VITA 46.0–2019. VPX provides VMEbus-based systems with support for switched fabrics over a new high speed connector. Defined by the VMEbus International Trade Association (VITA) working group starting in 2003, it was first demonstrated in 2004, and became an ANSI standard in 2007.

<span class="mw-page-title-main">Elma Electronic</span>

Elma Electronic is a publicly traded Swiss electronics company founded in 1960 and based in Wetzikon, Switzerland. The company has 5 product divisions: Systems Platforms, Backplanes, Enclosures & Components, Rotary Switches, and Cabinet Enclosures. The largest segment is systems packaging serving the military, aerospace, homeland security, medical and industrial markets. The Elma Bustronic division develops backplanes, including VME320, which was the world's fastest VME backplane in 1997. Elma Bustronic also develops backplanes in OpenVPX, VMEbus, VME64X, CompactPCI, MicroTCA, and custom bus structures. Elma is an executive member of the PCI Industrial Computer Manufacturers Group (PICMG), VME International Trade Association, and member of the OpenVPX Industry Working Standards Group.

<span class="mw-page-title-main">FPGA Mezzanine Card</span> ANSI/VITA input/output standard

FPGA Mezzanine Card (FMC) is an ANSI/VITA 57.1 standard that defines I/O mezzanine modules with connection to an FPGA or other device with re-configurable I/O capability. It specifies a low profile connector and compact board size for compatibility with several industry standard slot card, blade, low profile motherboard, and mezzanine form factors.

Bustec is a company that designs and manufactures instrumentation for high-performance data acquisition and instrument control. The company's products serve applications that include engine testing, automotive and missile testing, wind tunnel data acquisition and control, acoustics, vibration applications, aircraft component testing and more. Headquarters is located in Shannon, Co. Clare, Ireland.

<span class="mw-page-title-main">Modular crate electronics</span>

Modular crate electronics are a general type of electronics and support infrastructure commonly used for trigger electronics and data acquisition in particle detectors. These types of electronics are common in such detectors because all the electronic pathways are made by discrete physical cables connecting together logic blocks on the fronts of modules. This allows circuits to be designed, built, tested, and deployed very quickly as an experiment is being put together. Then the modules can all be removed and used again when the experiment is done.

References