MTDH

Last updated
MTDH
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MTDH , 3D3, AEG-1, AEG1, LYRIC, LYRIC/3D3, metadherin
External IDs OMIM: 610323 MGI: 1914404 HomoloGene: 12089 GeneCards: MTDH
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_178812
NM_001363136
NM_001363137
NM_001363138
NM_001363139

Contents

NM_026002
NM_001357925
NM_001357926

RefSeq (protein)

NP_848927
NP_001350065
NP_001350066
NP_001350067
NP_001350068

NP_080278
NP_001344854
NP_001344855

Location (UCSC) Chr 8: 97.64 – 97.73 Mb Chr 15: 34.08 – 34.15 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Metadherin, also known as protein LYRIC or astrocyte elevated gene-1 protein (AEG-1) is a protein that in humans is encoded by the MTDH gene. [5] [6] [7]

Function

MTDH (AEG-1) is involved in HIF-1alpha mediated angiogenesis. MTDH also interacts with SND1 and involved in RNA-induced silencing complex (RISC) and plays very important role in RISC and miRNA functions. [8] [9] MTDH has been shown to interact with spliceosome proteins in the cell nucleus and regulate the process of alternative splicing. [10]

MTDH induces an oncogene called Late SV40 factor (LSF/TFCP2) which is involved in thymidylate synthase (TS) induction and DNA biosynthesis synthesis. [11] Late SV40 factor (LSF/TFCP2) enhances angiogenesis by transcriptionally up-regulating matrix metalloproteinase-9 (MMP9). [12]

Clinical significance

MTDH acts as an oncogene in melanoma, malignant glioma, breast cancer and hepatocellular carcinoma. [13] It is highly expressed in these cancers and helps in their progression and development. It is induced by c-Myc oncogene and plays an important role in anchorage independent growth of cancer cells (metastasis).

Elevated expression of MTDH, which is overexpressed in more than 40% of breast cancers, is associated with poor clinical outcomes. MTDH has a dual role in promoting metastatic seeding and enhancing chemoresistance. MTDH is therefore a potential therapeutic target for enhancing chemotherapy and reducing metastasis. [14] [15] [16] [17]

MTDH has been shown to be overexpressed in prostate cancer, where there is a shift towards a more cytoplasmic localisation, signalling a poor prognosis. [18] [19] In the nucleus of prostate cancer cells, MTDH has been shown to affect alternative splicing of genes such as CD44, which may also be associated with prostate cancer progression. [10]

LSF/TFCP2 plays a multifaceted role in chemo resistance, EMT, allergic response, inflammation and Alzheimer's disease. [20]

MTDH controls many hallmarks of oncogenes and cancer. MTDH/AEG-1 induces hepato steatosis in mouse liver. [21] MTDH knockdown by artificial microRNA interference functions as a potential tumor suppressor in breast cancer. [22] Astrocyte elevated gene-1/MTDH undergoes palmitoylation in normal and abnormal cell physiology. [23] Biomaterial titanium substrata with microgrooves can alter MTDH expression in human primary cells. [24]

Interactions

MTDH has been shown to interact with:

Related Research Articles

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types. EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis and in the initiation of metastasis in cancer progression.

<span class="mw-page-title-main">Interleukin 24</span> Protein-coding gene in the species Homo sapiens

Interleukin 24 (IL-24) is a protein in the interleukin family, a type of cytokine signaling molecule in the immune system. In humans, this protein is encoded by the IL24 gene.

<span class="mw-page-title-main">Thymidylate synthase</span> Enzyme

Thymidylate synthase (TS) is an enzyme that catalyzes the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP). Thymidine is one of the nucleotides in DNA. With inhibition of TS, an imbalance of deoxynucleotides and increased levels of dUMP arise. Both cause DNA damage.

<span class="mw-page-title-main">Mucin 4</span> Protein-coding gene in the species Homo sapiens

Mucin-4 (MUC-4) is a mucin protein that in humans is encoded by the MUC4 gene. Like other mucins, MUC-4 is a high-molecular weight glycoprotein.

<span class="mw-page-title-main">MTA1</span> Protein-coding gene in the species Homo sapiens

Metastasis-associated protein MTA1 is a protein that in humans is encoded by the MTA1 gene. MTA1 is the founding member of the MTA family of genes. MTA1 is primarily localized in the nucleus but also found to be distributed in the extra-nuclear compartments. MTA1 is a component of several chromatin remodeling complexes including the nucleosome remodeling and deacetylation complex (NuRD). MTA1 regulates gene expression by functioning as a coregulator to integrate DNA-interacting factors to gene activity. MTA1 participates in physiological functions in the normal and cancer cells. MTA1 is one of the most upregulated proteins in human cancer and associates with cancer progression, aggressive phenotypes, and poor prognosis of cancer patients.

<span class="mw-page-title-main">RhoC</span> Protein-coding gene in the species Homo sapiens

RhoC is a small signaling G protein, and is a member of the Rac subfamily of the family Rho family of GTPases. It is encoded by the gene RHOC.

<span class="mw-page-title-main">TFCP2</span> Protein-coding gene in the species Homo sapiens

Alpha-globin transcription factor CP2 is a protein that in humans is encoded by the TFCP2 gene.

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">STAU1</span> Protein-coding gene in the species Homo sapiens

Double-stranded RNA-binding protein Staufen homolog 1 is a protein that in humans is encoded by the STAU1 gene.

<span class="mw-page-title-main">SND1</span> Protein and coding gene in humans

Staphylococcal nuclease domain-containing protein 1 also known as 100 kDa coactivator or Tudor domain-containing protein 11 (TDRD11) is a protein that in humans is encoded by the SND1 gene. SND1 is a main component of RISC complex and plays an important role in miRNA function. SND1 is Tudor domain containing protein and Tudor Proteins are highly conserved proteins and even present in Drosophila melanogaster. SND1 is also involved in Autism.

<span class="mw-page-title-main">AGR2</span> Protein-coding gene in the species Homo sapiens

Anterior gradient protein 2 homolog (AGR-2), also known as secreted cement gland protein XAG-2 homolog, is a protein that in humans is encoded by the AGR2 gene. Anterior gradient homolog 2 was originally discovered in Xenopus laevis. In Xenopus AGR2 plays a role in cement gland differentiation, but in human cancer cell lines high levels of AGR2 correlate with downregulation of the p53 response, cell migration, and cell transformation. However, there have been other observations that AGR2 can repress growth and proliferation.

<span class="mw-page-title-main">ID4</span> Protein-coding gene in humans

ID4 is a protein coding gene. In humans, it encodes for the protein known as DNA-binding protein inhibitor ID-4. This protein is known to be involved in the regulation of many cellular processes during both prenatal development and tumorigenesis. This is inclusive of embryonic cellular growth, senescence, cellular differentiation, apoptosis, and as an oncogene in angiogenesis.

<span class="mw-page-title-main">LATS2</span> Protein-coding gene in the species Homo sapiens

Large tumor suppressor kinase 2 (LATS2) is an enzyme that in humans is encoded by the LATS2 gene.

<span class="mw-page-title-main">MTA3</span> Protein-coding gene in the species Homo sapiens

Metastasis-associated protein MTA3 is a protein that in humans is encoded by the MTA3 gene. MTA3 protein localizes in the nucleus as well as in other cellular compartments MTA3 is a component of the nucleosome remodeling and deacetylate (NuRD) complex and participates in gene expression. The expression pattern of MTA3 is opposite to that of MTA1 and MTA2 during mammary gland tumorigenesis. However, MTA3 is also overexpressed in a variety of human cancers.

<span class="mw-page-title-main">Tudor domain</span>

In molecular biology, a Tudor domain is a conserved protein structural domain originally identified in the Tudor protein encoded in Drosophila. The Tudor gene was found in a Drosophila screen for maternal factors that regulate embryonic development or fertility. Mutations here are lethal for offspring, inspiring the name Tudor, as a reference to the Tudor King Henry VIII and the several miscarriages experienced by his wives.

An oncomir is a microRNA (miRNA) that is associated with cancer. MicroRNAs are short RNA molecules about 22 nucleotides in length. Essentially, miRNAs specifically target certain messenger RNAs (mRNAs) to prevent them from coding for a specific protein. The dysregulation of certain microRNAs (oncomirs) has been associated with specific cancer forming (oncogenic) events. Many different oncomirs have been identified in numerous types of human cancers.

mir-145 Non-coding RNA in the species Homo sapiens

In molecular biology, mir-145 microRNA is a short RNA molecule that in humans is encoded by the MIR145 gene. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

mir-221 microRNA

In molecular biology, mir-221 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

<span class="mw-page-title-main">Cancer biomarker</span> Substance or process that is indicative of the presence of cancer in the body

A cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker may be a molecule secreted by a tumor or a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis, and epidemiology. Ideally, such biomarkers can be assayed in non-invasively collected biofluids like blood or serum.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000147649 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022255 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: MTDH metadherin".
  6. Brown DM, Ruoslahti E (April 2004). "Metadherin, a cell surface protein in breast tumors that mediates lung metastasis". Cancer Cell. 5 (4): 365–74. doi: 10.1016/S1535-6108(04)00079-0 . PMID   15093543.
  7. Sutherland HG, Lam YW, Briers S, Lamond AI, Bickmore WA (March 2004). "3D3/lyric: a novel transmembrane protein of the endoplasmic reticulum and nuclear envelope, which is also present in the nucleolus". Experimental Cell Research. 294 (1): 94–105. doi:10.1016/j.yexcr.2003.11.020. PMID   14980505.
  8. Yoo BK, Santhekadur PK, Gredler R, Chen D, Emdad L, Bhutia S, et al. (May 2011). "Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma". Hepatology. 53 (5): 1538–48. doi:10.1002/hep.24216. PMC   3081619 . PMID   21520169.
  9. Yoo BK, Emdad L, Lee SG, Su ZZ, Santhekadur P, Chen D, et al. (April 2011). "Astrocyte elevated gene-1 (AEG-1): A multifunctional regulator of normal and abnormal physiology". Pharmacology & Therapeutics. 130 (1): 1–8. doi:10.1016/j.pharmthera.2011.01.008. PMC   3043119 . PMID   21256156.
  10. 1 2 Luxton HJ, Simpson BS, Mills IG, Brindle NR, Ahmed Z, Stavrinides V, Heavey S, Stamm S, Whitaker HC (September 2019). "The Oncogene Metadherin Interacts with the Known Splicing Proteins YTHDC1, Sam68 and T-STAR and Plays a Novel Role in Alternative mRNA Splicing". Cancers. 11 (9): 1233. doi: 10.3390/cancers11091233 . PMC   6770463 . PMID   31450747.
  11. Yoo BK, Gredler R, Vozhilla N, Su ZZ, Chen D, Forcier T, et al. (August 2009). "Identification of genes conferring resistance to 5-fluorouracil". Proceedings of the National Academy of Sciences of the United States of America. 106 (31): 12938–43. Bibcode:2009PNAS..10612938Y. doi: 10.1073/pnas.0901451106 . PMC   2722317 . PMID   19622726.
  12. Santhekadur PK, Gredler R, Chen D, Siddiq A, Shen XN, Das SK, et al. (January 2012). "Late SV40 factor (LSF) enhances angiogenesis by transcriptionally up-regulating matrix metalloproteinase-9 (MMP-9)". The Journal of Biological Chemistry. 287 (5): 3425–32. doi: 10.1074/jbc.M111.298976 . PMC   3270996 . PMID   22167195.
  13. Yoo BK, Emdad L, Su ZZ, Villanueva A, Chiang DY, Mukhopadhyay ND, et al. (March 2009). "Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression". The Journal of Clinical Investigation. 119 (3): 465–77. doi:10.1172/JCI36460. PMC   2648696 . PMID   19221438.
  14. Hu G, Chong RA, Yang Q, Wei Y, Blanco MA, Li F, et al. (January 2009). "MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer". Cancer Cell. 15 (1): 9–20. doi:10.1016/j.ccr.2008.11.013. PMC   2676231 . PMID   19111877.
  15. Shen M, Wei Y, Kim H, Wan L, Jiang YZ, Hang X, et al. (2021-11-29). "Small-molecule inhibitors that disrupt the MTDH–SND1 complex suppress breast cancer progression and metastasis". Nature Cancer. 3 (1): 43–59. doi:10.1038/s43018-021-00279-5. ISSN   2662-1347. PMC   8818087 . PMID   35121987.
  16. Shen M, Smith HA, Wei Y, Jiang YZ, Zhao S, Wang N, et al. (2021-11-29). "Pharmacological disruption of the MTDH–SND1 complex enhances tumor antigen presentation and synergizes with anti-PD-1 therapy in metastatic breast cancer". Nature Cancer. 3 (1): 60–74. doi:10.1038/s43018-021-00280-y. ISSN   2662-1347. PMC   8818088 . PMID   35121988.
  17. "New cancer therapy from Yibin Kang's lab holds potential to switch off major cancer types without side effects". Princeton University. Retrieved 2021-12-10.
  18. Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, et al. (December 2007). "Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity". Oncogene. 26 (55): 7647–55. doi:10.1038/sj.onc.1210572. PMID   17563745. S2CID   887427.
  19. Thirkettle HJ, Girling J, Warren AY, Mills IG, Sahadevan K, Leung H, et al. (May 2009). "LYRIC/AEG-1 is targeted to different subcellular compartments by ubiquitinylation and intrinsic nuclear localization signals". Clinical Cancer Research. 15 (9): 3003–13. doi: 10.1158/1078-0432.CCR-08-2046 . PMID   19383828.
  20. Santhekadur PK, Rajasekaran D, Siddiq A, Gredler R, Chen D, Schaus SC, Hansen U, Fisher PB, Sarkar D (2012). "The transcription factor LSF: a novel oncogene for hepatocellular carcinoma" (PDF). Am J Cancer Res. 2 (3): 269–285. PMC   3365805 . PMID   22679558.
  21. Srivastava J, Siddiq A, Emdad L, Santhekadur PK, Chen D, Gredler R, et al. (November 2012). "Astrocyte elevated gene-1 promotes hepatocarcinogenesis: novel insights from a mouse model". Hepatology. 56 (5): 1782–91. doi:10.1002/hep.25868. PMC   3449036 . PMID   22689379.
  22. Wang S, Shu JZ, Cai Y, Bao Z, Liang QM (2012). "Establishment and characterization of MTDH knockdown by artificial MicroRNA interference - functions as a potential tumor suppressor in breast cancer" (PDF). Asian Pacific Journal of Cancer Prevention. 13 (6): 2813–8. doi: 10.7314/apjcp.2012.13.6.2813 . PMID   22938464.
  23. Martin BR, Wang C, Adibekian A, Tully SE, Cravatt BF (November 2011). "Global profiling of dynamic protein palmitoylation". Nature Methods. 9 (1): 84–9. doi:10.1038/nmeth.1769. PMC   3248616 . PMID   22056678.
  24. Lee MH, Kang JH, Lee SW (April 2012). "The significance of differential expression of genes and proteins in human primary cells caused by microgrooved biomaterial substrata". Biomaterials. 33 (11): 3216–34. doi:10.1016/j.biomaterials.2012.01.034. PMID   22285466.
  25. Lee SJ, Choi KM, Bang G, Park SG, Kim EB, Choi JW, et al. (June 2021). "Identification of Nucleolin as a Novel AEG-1-Interacting Protein in Breast Cancer via Interactome Profiling". Cancers. 13 (11): 2842. doi: 10.3390/cancers13112842 . PMC   8201222 . PMID   34200450. S2CID   235436955.
  26. Neeli PK, Gollavilli PN, Mallappa S, Hari SG, Kotamraju S (March 2020). "A novel metadherinΔ7 splice variant enhances triple negative breast cancer aggressiveness by modulating mitochondrial function via NFĸB-SIRT3 axis". Oncogene. 39 (10): 2088–2102. doi:10.1038/s41388-019-1126-6. PMID   31806873. S2CID   208648747.

Further reading