Magneto-electric spin-orbit

Last updated

Magneto-electric spin-orbit (MESO) is a technology designed for constructing scalable integrated circuits, that works with a different operating principle than CMOS devices such as MOSFETs, proposed by Intel, [1] that is compatible with CMOS device manufacturing techniques and machinery. [2] [3]

MESO devices operate by the coupling of the magnetoelectric effect with the spin orbit coupling. [3] Specifically, the magnetoelectric effect will induce a change in magnetization within the device due to an induced electric field, which can then be read out by the spin orbit coupling component which converts it into an electric charge. [4] [3] This mechanism is analogous to how a CMOS device operates with the source, gate and drain electrodes working together to form a logic gate.

As of 2020, the technology is under development by Intel and University of California, Berkeley. [5] The first experiment, conducted in 2020 in nanoGUNE, proved that spin-orbit coupling could be used for implementing MESO. [6]

Performance

Before the introduction of MESO, Intel evaluated 17 different device architectures for beyond CMOS scaling which aims to circumvent scaling challenges present with CMOS devices such as MOSFETs used in integrated circuits. For testing, these architectures were made with production processes compatible with those used for CMOS devices since some CMOS devices are still necessary for interfacing with other circuits and for providing the clock signal for an integrated circuit, and for reusing existing production equipment: Tunneling FETs, graphene p-n junctions, ITFETs, BisFET, spinFETs, all spin logic, spin torque oscillators, domain wall logic, spin torque majority, spin torque triad, spin wave device, nano magnet logic, charge spin logic, piezo FETs, MITFETs, FeFETs and negative capacitance FETs were tested and it was found that none offered both improved performance characteristics and lower power consumption compared with CMOS. According to VentureBeat, simulations showed that, on a 32-bit ALU, MESO devices offer both higher performance (processing speed in TOPS per cm2) and lower power density than CMOS HP devices, which had the highest performance among all other devices except MESO. [7] [2]

Compared to CMOS, MESO circuits can require less energy for switching, can have a lower operating voltage, feature a higher integration density, possess non-volatility which allows for ultra low standby power consumption, and the energy required to switch MESO devices scales down cubically with every miniaturization by a factor of two of the device. [3] These features make MESO attractive for replacing CMOS devices in the design of future logic gates and circuits in integrated circuits as it can help increase their performance and lower their power consumption.

There is a huge challenge in the ME writing processes regarding the necessary materials. In recent years, great efforts are being made in the scientific community in order to make the magnetoelectric effects work in nanostructure (thin film). The main issue is that, when ferroelectric material transfers to thinfilm, it loses its FE properties, making it even more difficult to achieve a high efficiency-coupling of FE-FM (ME) at nanometer-size systems.

Feature Size [nm] [3] Supply Voltage [mV] [3] Switching Energy [J] [3]
CMOS10100 - 700300x10−18
MESO1010 - 10010x10−18

Related Research Articles

<span class="mw-page-title-main">Integrated circuit</span> Electronic circuit formed on a small, flat piece of semiconductor material

An integrated circuit, also known as a microchip or IC, is a small electronic device made up of multiple interconnected electronic components such as transistors, resistors, and capacitors. These components are etched onto a small piece of semiconductor material, usually silicon. Integrated circuits are used in a wide range of electronic devices, including computers, smartphones, and televisions, to perform various functions such as processing and storing information. They have greatly impacted the field of electronics by enabling device miniaturization and enhanced functionality.

<span class="mw-page-title-main">Transistor</span> Solid-state electrically operated switch also used as an amplifier

A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.

<span class="mw-page-title-main">Moore's law</span> Observation on the growth of integrated circuit capacity

Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience in production.

<span class="mw-page-title-main">MOSFET</span> Type of field-effect transistor

The metal–oxide–semiconductor field-effect transistor is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The term metal–insulator–semiconductor field-effect transistor (MISFET) is almost synonymous with MOSFET. Another near-synonym is insulated-gate field-effect transistor (IGFET).

<span class="mw-page-title-main">CMOS</span> Technology for constructing integrated circuits

Complementary metal–oxide–semiconductor is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors, data converters, RF circuits, and highly integrated transceivers for many types of communication.

Spintronics, also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.

In computer engineering, a logic family is one of two related concepts:

<span class="mw-page-title-main">Fin field-effect transistor</span> Type of non-planar transistor

A fin field-effect transistor (FinFET) is a multigate device, a MOSFET built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel, forming a double or even multi gate structure. These devices have been given the generic name "FinFETs" because the source/drain region forms fins on the silicon surface. The FinFET devices have significantly faster switching times and higher current density than planar CMOS technology.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

<span class="mw-page-title-main">Depletion-load NMOS logic</span> Form of digital logic family in integrated circuits

In integrated circuits, depletion-load NMOS is a form of digital logic family that uses only a single power supply voltage, unlike earlier NMOS logic families that needed more than one different power supply voltage. Although manufacturing these integrated circuits required additional processing steps, improved switching speed and the elimination of the extra power supply made this logic family the preferred choice for many microprocessors and other logic elements.

In the field of electronics, a technique where part of the output of a system is used at startup can be described as bootstrapping.

The "22 nm" node is the process step following 32 nm in CMOS MOSFET semiconductor device fabrication. The typical half-pitch for a memory cell using the process is around 22 nm. It was first demonstrated by semiconductor companies for use in RAM memory in 2008. In 2010, Toshiba began shipping 24 nm flash memory chips, and Samsung Electronics began mass-producing 20 nm flash memory chips. The first consumer-level CPU deliveries using a 22 nm process started in April 2012 with the Intel Ivy Bridge processors.

<span class="mw-page-title-main">Multigate device</span> MOS field-effect transistor with more than one gate

A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a multiple-independent-gate field-effect transistor (MIGFET). The most widely used multi-gate devices are the FinFET and the GAAFET, which are non-planar transistors, or 3D transistors.

Nanocircuits are electrical circuits operating on the nanometer scale. This is well into the quantum realm, where quantum mechanical effects become very important. One nanometer is equal to 10−9 meters or a row of 10 hydrogen atoms. With such progressively smaller circuits, more can be fitted on a computer chip. This allows faster and more complex functions using less power. Nanocircuits are composed of three different fundamental components. These are transistors, interconnections, and architecture, all fabricated on the nanometer scale.

<span class="mw-page-title-main">PMOS logic</span> Family of digital circuits

PMOS or pMOS logic is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS logic was the dominant semiconductor technology for large-scale integrated circuits before being superseded by NMOS and CMOS devices.

<span class="mw-page-title-main">Ian A. Young</span> American electrical engineer

Ian A. Young is an Intel engineer. Young is a co-author of 50 research papers, and has 71 patents in switched capacitor circuits, DRAM, SRAM, BiCMOS, x86 clocking, Photonics and spintronics.

<span class="mw-page-title-main">Beyond CMOS</span> Possible future digital logic technologies

Beyond CMOS refers to the possible future digital logic technologies beyond the scaling limits of CMOS technology. which limits device density and speeds due to heating effects.

Sasikanth Manipatruni is an American engineer and inventor in the fields of Computer engineering, Integrated circuit technology, Materials Engineering and semiconductor device fabrication. Manipatruni contributed to developments in silicon photonics, spintronics and quantum materials.

References

  1. https://www.extremetech.com/computing/286163-intels-fundamentally-new-meso-architecture-could-arrive-in-a-few-years
  2. 1 2 "Intel looks beyond CMOS to MESO". 14 January 2022.
  3. 1 2 3 4 5 6 7 Manipatruni, Sasikanth; Nikonov, Dmitri E.; Lin, Chia-Ching; Gosavi, Tanay A.; Liu, Huichu; Prasad, Bhagwati; Huang, Yen-Lin; Bonturim, Everton; Ramesh, Ramamoorthy; Young, Ian A. (2018). "Scalable energy-efficient magnetoelectric spin–orbit logic". Nature. 565 (7737): 35–42. doi:10.1038/s41586-018-0770-2. PMID   30510160. S2CID   54444242.
  4. Lin, Chia-Ching; Gosavi, Tanay; Nikonov, Dmitri E.; Huang, Yen-Lin; Prasad, Bhagwati; Choi, WonYoung; Pham, Van Tuong; Groen, Inge; Chen, Jun-Yang; DC, Mahendra; Liu, Huichu; Oguz, Kaan; Walker, Emily S; Plombon, John; Buford, Benjamin; Naylor, Carl H.; Wang, Jian-Ping; Casanova, Felix; Ramesh, Ramamoorthy; Young, Ian A. (2019). "Experimental demonstration of integrated magneto-electric and spin-orbit building blocks implementing energy-efficient logic". 2019 IEEE International Electron Devices Meeting (IEDM). pp. 37.3.1–37.3.4. doi:10.1109/IEDM19573.2019.8993620. ISBN   978-1-7281-4032-2. S2CID   211210115.{{cite book}}: |journal= ignored (help)
  5. "How the New Quantum 'MESO' Architecture Could Replace CMOS". DesignNews. 10 January 2019. Retrieved 2019-07-27.
  6. Pham, Van Tuong; Groen, Inge; Manipatruni, Sasikanth; Choi, Won Young; Nikonov, Dmitri E.; Sagasta, Edurne; Lin, Chia-Ching; Gosavi, Tanay A.; Marty, Alain; Hueso, Luis E.; Young, Ian A. (June 2020). "Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures". Nature Electronics. 3 (6): 309–315. arXiv: 2002.10581 . doi:10.1038/s41928-020-0395-y. ISSN   2520-1131. S2CID   211296841.
  7. "Intel Shows Life Beyond CMOS". 3 April 2017.