Marchantia quadrata

Last updated

Marchantia quadrata
Marchantia quadrata, Inchnadamph, Lairg, Scotland 2.jpg
Marchantia quadrata
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Division: Marchantiophyta
Class: Marchantiopsida
Order: Marchantiales
Family: Marchantiaceae
Genus: Marchantia
Species:
M. quadrata
Binomial name
Marchantia quadrata
Scop., 1772 [1]
Synonyms [2] [3]
List
  • Conocephalus quadratus(Scop.) Huebener
  • Achiton quadratus(Scop.) Corda
  • Chomiocarpon quadratum(Scop.) Lindb.
  • Conocephalum quadratum(Scop.) Huebener
  • Cyathophora quadrata(Scop.) Trevis.
  • Marchantia commutata var. quadrata(Scop.) Lindenb.
  • Preissia quadrata(Scop.) Nees
  • Reboulia quadrata(Scop.) Bertol.

Marchantia quadrata is a species of liverwort, a simple non-flowering plant that grows as a flat, green, leaf-like structure (thallus) typically found on damp rocks and soil along stream banks in the Northern Hemisphere. The species was originally classified in its own genus Preissia due to its distinctive features, including larger spores and lack of the specialised cup-like reproductive structures common in other liverworts, but genetic studies have shown it belongs within the genus Marchantia . Like most liverworts, it reproduces both sexually, through separate male and female plants that produce umbrella-like reproductive structures, and through regeneration from fragments. The species prefers slightly drier habitats than its relatives and shows significant genetic variation across its range, suggesting it may comprise several distinct but closely related species.

Contents

Taxonomy and evolution

Marchantia quadrata was originally described as a distinct genus, Preissia, but molecular phylogenetics studies have shown that both Preissia and Bucegia are deeply nested within Marchantia . As a result, these genera have been merged into Marchantia, with M. quadrata and M. romanica (formerly Bucegia romanica) now placed in Marchantia subgenus Preissia. This subgenus can be distinguished from other Marchantia groups by several key features: it lacks the characteristic cup-shaped structures (gemma cups) and their contained reproductive bodies (gemmae) that are typically found on the plant's surface. The underside of the plant has only two rows of scale-like structures rather than multiple rows. The male reproductive structures form smooth, unlobed discs , while the female reproductive structures have short lobes and stalks with two grooves containing root-like rhizoids. Unlike other Marchantia species, these stalks lack the green, chambered tissue typical of the genus. [3]

The species belongs to clade II of Marchantia, which includes only M. quadrata and M. romanica. Both species have a pan-continental distribution, though limited, largely in the northern hemisphere. Enzyme polymorphism has been detected in M. quadrata populations from Europe, Asia and North America, and ribosomal DNA sequences differ significantly between populations, suggesting M. quadrata as currently circumscribed might represent multiple taxa. Two proposed subspecies have been suggested based on sexual differences ( dioicous versus monoicous ), however, no known genetic or other morphological markers correlate with these proposed subspecies. [4]

Description

A colony growing on rock in Liezen, Austria. The green leafy thalli (ground-hugging plant bodies) bear numerous umbrella-like antheridiophores on reddish-brown stalks, indicating this is a male plant. Marchantia quadrata, Liezen, Austria 2.jpg
A colony growing on rock in Liezen, Austria. The green leafy thalli (ground-hugging plant bodies) bear numerous umbrella-like antheridiophores on reddish-brown stalks, indicating this is a male plant.

The adult thallus of M. quadrata is characterised by its substantial thickness, reaching up to 35 cell layers deep excluding the chlorophyllose cells in the air chambers. Unlike some related species, it lacks a definite midrib . The thallus is pale green with somewhat wavy margins, and branches dichotomous ly when young, later forming apical innovations. The ventral surface bears two longitudinal rows of purple scales along the median line, and both smooth and pegged rhizoids. [5]

The thallus contains specialised sclerotic cells in its ventral region that serve as conducting tissue, though these differ from true tracheids in both form and function. These sclerotic cells are elongated, thick-walled, dark brown, fibre-like cells with pointed ends that typically occur singly, though occasionally two or three may be found together. Their primary function is believed to be water conduction and storage, as they are absent in plants grown in moist conditions. [5]

Growth occurs via a single cuneate apical cell that cuts off segments from its four sides. The species demonstrates significant regenerative capabilities, readily producing adventitious growths from its ventral cells under suitable conditions. This regenerative growth is particularly evident when plants are subjected to greenhouse conditions at the end of the growing season, though fruiting plants bearing archegonial heads typically fail to continue development during this period. [5] [6]

Reproduction

Male reproductive structure (antheridiophore), showing its characteristic unlobed disc shape viewed from below. The silvery-white depressions visible on the underside of the disc contain the sperm-producing antheridia. Preissia quadrata (b, 144646-474749) 0216.jpg
Male reproductive structure (antheridiophore), showing its characteristic unlobed disc shape viewed from below. The silvery-white depressions visible on the underside of the disc contain the sperm-producing antheridia.

Marchantia quadrata is typically dioecious (with separate male and female plants), though monoecious individuals occur rarely (approximately 1% of plants). Both male and female reproductive structures are borne on stalked receptacles , with bisexual receptacles being relatively common. Male receptacles typically contain 36–40 antheridia, while female receptacles bear 12–16 archegonia, usually distributed as three to four per quadrant, though up to six have been observed in a single quadrant. [5] [6]

The timing of reproductive development shows distinct seasonal patterns. Male receptacles are most abundant early in the growing season, while female receptacles predominate later. Bisexual receptacles reach their peak frequency during mid-season. On bisexual receptacles, antheridial development always precedes archegonial formation. [5]

Sporophyte development

Despite nearly complete fertilisation success, mature sporophyte development is limited, with receptacles typically producing between one and six sporophytes, averaging about 3 per head. Each sporophyte capsule produces approximately 3,000 spores, resulting in an average of 9,000 spores per receptacle head. This represents a significant reduction compared to the related M. polymorpha, which produces over 7 million spores per head. [6]

The spores of M. quadrata are larger than those of M. polymorpha, measuring approximately 75  micrometres (μm) in diameter compared to 18 μm. The species produces elaters (specialized cells that aid in spore dispersal) that are proportionally more numerous relative to spore count than in M. quadrata, though smaller in size. Evidence suggests that spore mother cells and elater cells are derived from the same generation of cells. [6]

Spore germination and development

The spores show high initial viability, with 100% germination rates when fresh, though this declines to approximately 10% after four to five months. Germination typically occurs within six days under suitable conditions on solid substrate. The species shows less adaptation to hydrophytic (aquatic) conditions during early development compared to M. polymorpha, reflecting its more strictly mesophytic adult behaviour. In its natural habitat, M. quadrata is typically found growing on thin soil covering granitic rocks, usually along stream banks, and tends to occupy relatively drier situations than both M. polymorpha and Conocephalum . [6] [5]

Young gametophyte development is characterised by rapid cell division, resulting in progressively smaller cells despite the large initial spore size. The developing thallus frequently exhibits branching, with some spores producing twin thalli. Unlike M. polymorpha, young plants of M. quadrata lack specialised cells for essential oil storage. The early-stage plants produce smooth-walled rhizoids for anchorage, along with mucilage hairs, though these rhizoids are relatively few in number compared to related species. [6]

Related Research Articles

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Moss</span> Division of non-vascular land plants

Mosses are small, non-vascular flowerless plants in the taxonomic division Bryophytasensu stricto. Bryophyta may also refer to the parent group bryophytes, which comprise liverworts, mosses, and hornworts. Mosses typically form dense green clumps or mats, often in damp or shady locations. The individual plants are usually composed of simple leaves that are generally only one cell thick, attached to a stem that may be branched or unbranched and has only a limited role in conducting water and nutrients. Although some species have conducting tissues, these are generally poorly developed and structurally different from similar tissue found in vascular plants. Mosses do not have seeds and after fertilisation develop sporophytes with unbranched stalks topped with single capsules containing spores. They are typically 0.2–10 cm (0.1–3.9 in) tall, though some species are much larger. Dawsonia, the tallest moss in the world, can grow to 50 cm (20 in) in height. There are approximately 12,000 species.

<span class="mw-page-title-main">Marchantiophyta</span> Botanical division of non-vascular land plants

The Marchantiophyta are a division of non-vascular land plants commonly referred to as hepatics or liverworts. Like mosses and hornworts, they have a gametophyte-dominant life cycle, in which cells of the plant carry only a single set of genetic information.

<span class="mw-page-title-main">Antheridium</span> Part of a plant producing and containing male gametes

An antheridium is a haploid structure or organ producing and containing male gametes. The plural form is antheridia, and a structure containing one or more antheridia is called an androecium. Androecium is also the collective term for the stamens of flowering plants.

<span class="mw-page-title-main">Gemma (botany)</span> Asexual reproductive structure

A gemma is a single cell, or a mass of cells, or a modified bud of tissue, that detaches from the parent and develops into a new individual. This type of asexual reproduction is referred to as fragmentation. It is a means of asexual propagation in plants. These structures are commonly found in fungi, algae, liverworts and mosses, but also in some flowering plants such as pygmy sundews and some species of butterworts. Vascular plants have many other methods of asexual reproduction including bulbils and turions.

<i>Marchantia</i> Genus of plants in the liverwort family Marchantiaceae

Marchantia is a genus of liverworts in the family Marchantiaceae and the order Marchantiales.

<i>Conocephalum</i> Genus of plants

Conocephalum is a genus of complex thalloid liverworts in the order Marchantiales and is the only extant genus in the family Conocephalaceae. Some species of Conocephalum are assigned to the Conocephalum conicum complex, which includes several cryptic species. Conocephalum species are large liverworts with distinct patterns on the upper thallus, giving the appearance of snakeskin. The species Conocephalum conicum is named for its cone-shaped reproductive structures, called archegoniophores. Common names include snakeskin liverwort, great scented liverwort and cat-tongue liverwort.

<span class="mw-page-title-main">Prothallus</span> Gametophyte stage in the fern life cycle

A prothallus, or prothallium, is usually the gametophyte stage in the life of a fern or other pteridophyte. Occasionally the term is also used to describe the young gametophyte of a liverwort or peat moss as well. In lichens it refers to the region of the thallus that is free of algae.

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

This page provides a glossary of plant morphology. Botanists and other biologists who study plant morphology use a number of different terms to classify and identify plant organs and parts that can be observed using no more than a handheld magnifying lens. This page provides help in understanding the numerous other pages describing plants by their various taxa. The accompanying page—Plant morphology—provides an overview of the science of the external form of plants. There is also an alphabetical list: Glossary of botanical terms. In contrast, this page deals with botanical terms in a systematic manner, with some illustrations, and organized by plant anatomy and function in plant physiology.

<i>Marchantia polymorpha</i> Species of liverwort

Marchantia polymorpha is a species of large thalloid liverwort in the class Marchantiopsida. M. polymorpha is highly variable in appearance and contains several subspecies. This species is dioicous, having separate male and female plants. M. polymorpha has a wide distribution and is found worldwide. Common names include common liverwort or umbrella liverwort.

<i>Jensenia</i> Genus of liverworts

Jensenia is a bryophyte plant genus in the liverwort family Pallaviciniaceae. It has been treated as a subgenus of Pallavicinia by several authors, though a set of features seems to set it apart as a genus. The six or seven species of the genus belong to a southern, possibly Gondwana element.

<i>Pellia epiphylla</i> Species of liverworts in the family Pelliaceae

Pellia epiphylla is a species of thallose liverwort. It occurs in North America, Europe, North Africa and parts of Asia. It grows in patches in damp, sheltered places on neutral or acidic substrates. It is common on the banks of rivers, streams and ditches and also grows in wet woodland, marshes and on wet rocks.

<i>Marchantia berteroana</i> Species of liverwort

Marchantia berteroana is a liverwort species in the genus Marchantia.

<i>Pogonatum urnigerum</i> Species of moss

Pogonatum urnigerum is a species of moss in the family Polytrichaceae, commonly called urn haircap. The name comes from "urna" meaning "urn" and "gerere" meaning "to bear" which is believed to be a reference made towards the plant's wide-mouthed capsule. It can be found on gravelly banks or similar habitats and can be identified by the blue tinge to the overall green colour. The stem of this moss is wine red and it has rhizoids that keep the moss anchored to substrates. It is an acrocarpous moss that grows vertically with an archegonium borne at the top of each fertilized female gametophyte shoot which develops an erect sporophyte.

<i>Asterella californica</i> Species of plant

Asterella californica is a complex thallic liverwort in the phylum Marchantiophyta. A. californica often grows as colonies of flat rosettes of light green, rigid thalli, with undersides dark wine-red to nearly black. The receptacles are rounded, with four lobes each bearing a single sporangium sheathed by a white tattered skirt. A. californica is dioecious with separate male plants often intermingled with female plants. This species is found throughout California. See Distribution information below. Asterella californica is the commonest species of the three species of Asterella occurring in California; the other two species are A. bolanderi and A. palmeri.

<i>Porella platyphylla</i> Species of liverwort

Porella platyphylla is a species of liverwort belonging to the family Porellaceae. It has a Holarctic distribution, occurring across Eurasia and North America, where it typically grows on tree bark and rocks in areas with adequate rainfall. The species is most common in regions receiving at least 600 millimetres of annual precipitation. The species forms part of a complex taxonomic group that includes several closely related species and hybrids, with populations showing distinct genetic differences between continents despite their morphological similarity.

<i>Podomitrium phyllanthus</i> Species of liverwort

Podomitrium phyllanthus is a thalloid liverwort in the family Pallaviciniaceae. It is found in wet forests and rainforests of Australia, New Zealand and New Caledonia.

<i>Phaeoceros carolinianus</i> Species of hornwort

Phaeoceros carolinianus is a species of hornwort—a group of simple, non-vascular plants—that is found worldwide in damp, shaded areas. It forms flat, dark green, rosette-shaped patches measuring 10–20 millimeters (mm) in diameter on bare soil and rock surfaces. The plant is characterised by its horn-like spore capsules, which grow 40–60 mm tall, and for producing both male and female reproductive structures on the same plant. These features, along with its unique spore structure, distinguish it from closely related species like P. laevis.

<i>Monoclea forsteri</i> Species of liverwort

Monoclea forsteri is one of the two species in the thallose liverwort family Monocleaceae. It is dioicous with the capsule dehiscing with a single longitudinal slit. Endemic and widely distributed throughout New Zealand, it is also the country's largest thalloid liverwort. Hooker described the species in 1820. The holotype is in the British Museum.

References

  1. Scopoli, J.A. (1772). Flora Carniolica exhibens plantas Carnioliae indigenas et distributas in classes, genera, species, varietates, ordine Linnaeano. Editio secunda aucta et reformata (in Latin). Vol. II. Vindobona: Impensis Ioannis Pauli Krauss. p. 355.
  2. "Marchantia quadrata Scop". Tropicos v3.4.2. Missouri Botanical Garden . Retrieved 2024-10-26.
  3. 1 2 Long, David G.; Forrest, Laura L.; Villarreal, Juan Carlos; Crandall-Stotler, Barbara J. (2016). "Taxonomic changes in Marchantiaceae, Corsiniaceae and Cleveaceae (Marchantiidae, Marchantiophyta)". Phytotaxa. 252 (1): 77–80. doi:10.11646/phytotaxa.252.1.9.
  4. Bowman, John L; Arteaga-Vazquez, Mario; Berger, Frederic; Briginshaw, Liam N; Carella, Philip; Aguilar-Cruz, Adolfo; et al. (2022). "The renaissance and enlightenment of Marchantia as a model system". The Plant Cell. 34 (10): 3512–3542. doi: 10.1093/plcell/koac219 . PMC   9516144 .
  5. 1 2 3 4 5 6 Haupt, Arthur W. (1926). "Morphology of Preissia quadrata". Botanical Gazette. 82 (1): 30–54. doi:10.1086/333632.
  6. 1 2 3 4 5 6 O'Hanlon, Mary Ellen (1927). "A study of Preissia quadrata". Botanical Gazette. 84 (2): 208–218. doi:10.1086/333778.