MeVisLab

Last updated

MeVisLab
Mevislab logo.png
Developer(s) MeVis Medical Solutions AG, Fraunhofer MEVIS
Initial release1993;29 years ago (1993)
Stable release
3.5.0 / June 1, 2022;3 months ago (2022-06-01)
Operating system Cross-platform
Type
License Proprietary
Website www.mevislab.de

MeVisLab is a cross-platform application framework for medical image processing and scientific visualization. It includes advanced algorithms for image registration, segmentation, and quantitative morphological and functional image analysis. An IDE for graphical programming and rapid user interface prototyping is available.

Contents

MeVisLab is written in C++ and uses the Qt framework for graphical user interfaces. It is available cross-platform on Windows, Linux, and Mac OS X. The software development is done in cooperation between MeVis Medical Solutions AG and Fraunhofer MEVIS.

A freeware version of the MeVislab SDK is available (see Licensing). Open source modules are delivered as MeVisLab Public Sources in the SDK and available from the MeVisLab Community and Community Sources project.

History

MeVisLab development began in 1993 with the software ILAB1 of the CeVis Institute, written in C++. It allowed to interactively connect algorithms of the Image Vision Library (IL) on Silicon Graphics (SGI) to form image processing networks. In 1995, the newly founded MeVis Research GmbH (which became Fraunhofer MEVIS in 2009) took over the ILAB development and released ILAB2 and ILAB3. OpenInventor and Tcl scripting was integrated but both programs were still running on SGI only. [1]

In 2000, ILAB4 was released with the core rewritten in Objective-C for Windows. For being able to move away from the SGI platform, the Image Vision Library was substituted by the platform-independent, inhouse-developed MeVis Image Processing Library (ML). In 2002, the code was adapted to work on the application framework Qt. [1]

In 2004, the software was released under the name MeVisLab. It contained an improved IDE and was available on Windows and Linux. [2] See the Release history for details.

In 2007, MeVisLab has been acquired by MeVis Medical Solutions AG. Since then, MeVisLab has been continued as a collaborative project between the MeVis Medical Solutions and Fraunhofer MEVIS.

Features

Body center rendered in MeVisLab Gvr body wp.jpg
Body center rendered in MeVisLab

MeVisLab features include: [3] [4] [5]

MeVisLab principles

MeVisLab GUI Mevislab macosx wp B.jpg
MeVisLab GUI

MeVisLab is a modular development framework. Based on modules, networks can be created and applications can be built.

To support the creation of image processing networks, MeVisLab offers an IDE that allows data-flow modelling by visual programming. Important IDE features are the multiple document interface (MDI), module and connection inspectors with docking ability, advanced search, scripting and debugging consoles, movie and screenshot generation and galleries, module testing and error handling support. [15]

In the visual network editor, modules can be added and combined to set up data flow and parameter synchronization. The resulting networks can be modified dynamically by scripts at runtime. Macro modules can be created to encapsulate subnetworks of modules, scripting functionality and high-level algorithms.

On top of the networks, the medical application level with viewers and UI panels can be added. Panels are written in the MeVisLab Definition Language (MDL), can be scripted with Python or JavaScript and styled using MeVisLab-internal mechanisms or Qt features.

The development of own modules written in C++ or Python is supported by wizards.

Gvrimage 2 04 wp.jpg Gvrimage4 05 wp.jpg Gvrheart wp.jpg Gvrheart2 wp.jpg Vessels wp.jpg

MeVisLab forum

MeVisLab offers a very well-supported public forum in which core developers as well as users of all levels of experience share information. A free registration is necessary.

Fields of application, research projects

Application building with MeVisLab Fibertracking wp B.jpg
Application building with MeVisLab

MeVisLab has been used in a wide range of medical and clinical applications, including surgery planning [16] for liver, [17] [18] [19] [20] lung, [21] [22] head [23] [24] and neck and other body regions, analysis of dynamic, contrast enhanced breast [25] [26] and Prostate MRI, quantitative analysis of neurologic [27] and cardiovascular image series, [28] [29] orthopedic quantification and visualization, tumor lesion volumetry [30] and therapy monitoring, [31] enhanced visualization of mammograms, 3D breast ultrasound and tomosynthesis image data, and many other applications. MeVisLab is also used as a training and teaching tool [32] [33] for image processing (both general and medical [34] ) and visualization techniques.

MeVisLab is and has been used in many research projects, including:

Based on MeVisLab, the MedicalExplorationToolkit was developed to improve application development. [35] It is available as AddOn package for MeVisLab 1.5.2. and 1.6 on Windows.

MeVisLab can also be used to generate surface models of biomedical images and to export them in Universal 3D format for embedding in PDF files. [36]

Licensing

The MeVisLab SDK can be downloaded at no cost and without prior registration. The software can be used under three different license models: [37]

None of the above license models permits the redistribution of the MeVisLab SDK or parts thereof, or using MeVisLab or parts thereof as part of a commercial service or product.

The Fraunhofer MEVIS Release Modules are intellectual property of Fraunhofer MEVIS and strictly for non-commercial purposes. [37]

MeVisLab public sources

Selected MeVisLab modules are open source under a BSD license. These sources are part of the MeVisLab SDK installer.

MeVisLab community and community sources

In the MeVisLab Community Project, open-source modules for MeVisLab are contributed by a number of institutions. Contributors as of 2010 are:

The source code is released under BSD or LGPL license and managed in a central repository on SourceForge. Continuous builds are offered for various platforms.

PythonQt

PythonQt is a Python script binding for the Qt framework. It was originally written to make MeVisLab scriptable and then published as open source in 2007 under LGPL. An introduction of PythonQt was published in Qt Quarterly, which also includes a comparison to Pyqt.

PythonQt sources and documentation are available from SourceForge.

Similar software projects

See also

Related Research Articles

Qt (software) Object-oriented framework for software development

Qt is cross-platform software for creating graphical user interfaces as well as cross-platform applications that run on various software and hardware platforms such as Linux, Windows, macOS, Android or embedded systems with little or no change in the underlying codebase while still being a native application with native capabilities and speed.

Open Inventor, originally IRIS Inventor, is a C++ object oriented retained mode 3D graphics toolkit designed by SGI to provide a higher layer of programming for OpenGL. Its main goals are better programmer convenience and efficiency. Open Inventor exists as both proprietary software and free and open-source software, subject to the requirements of the GNU Lesser General Public License (LGPL), version 2.1.

PyQt

PyQt is a Python binding of the cross-platform GUI toolkit Qt, implemented as a Python plug-in. PyQt is free software developed by the British firm Riverbank Computing. It is available under similar terms to Qt versions older than 4.5; this means a variety of licenses including GNU General Public License (GPL) and commercial license, but not the GNU Lesser General Public License (LGPL). PyQt supports Microsoft Windows as well as various flavours of UNIX, including Linux and MacOS.

Heinz-Otto Peitgen German mathematician

Heinz-Otto Peitgen is a German mathematician and was President of Jacobs University from January 1, 2013 to December 31, 2013. Peitgen contributed to the study of fractals, chaos theory, and medical image computing, as well as helping to introduce fractals to the broader public.

Bernhard Preim is a specialist in human–computer interface design as well as in visual computing for medicine. He is currently professor of visualization at University of Magdeburg, Germany.

Orange (software)

Orange is an open-source data visualization, machine learning and data mining toolkit. It features a visual programming front-end for explorative rapid qualitative data analysis and interactive data visualization.

VTK

The Visualization Toolkit (VTK) is an open-source software system for 3D computer graphics, image processing and scientific visualization.

ITK is a cross-platform, open-source application development framework widely used for the development of image segmentation and image registration programs. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with an MRI scan in order to combine the information contained in both.

BALL

BALL is a C++ class framework and set of algorithms and data structures for molecular modelling and computational structural bioinformatics, a Python interface to this library, and a graphical user interface to BALL, the molecule viewer BALLView.

ParaView Scientific visualization software

ParaView is an open-source multiple-platform application for interactive, scientific visualization. It has a client–server architecture to facilitate remote visualization of datasets, and generates level of detail (LOD) models to maintain interactive frame rates for large datasets. It is an application built on top of the Visualization Toolkit (VTK) libraries. ParaView is an application designed for data parallelism on shared-memory or distributed-memory multicomputers and clusters. It can also be run as a single-computer application.

VisIt

VisIt is an open-source interactive parallel visualization and graphical analysis tool for viewing scientific data. It can be used to visualize scalar and vector fields defined on 2D and 3D structured and unstructured meshes. VisIt was designed to handle very large data set sizes in the terascale range and yet can also handle small data sets in the kilobyte range.

<span class="mw-page-title-main">3D Slicer</span> Image analysis and scientific visualization software

3D Slicer (Slicer) is a free and open source software package for image analysis and scientific visualization. Slicer is used in a variety of medical applications, including autism, multiple sclerosis, systemic lupus erythematosus, prostate cancer, lung cancer, breast cancer, schizophrenia, orthopedic biomechanics, COPD, cardiovascular disease and neurosurgery.

VisTrails

VisTrails is a scientific workflow management system developed at the Scientific Computing and Imaging Institute at the University of Utah that provides support for data exploration and visualization. It is written in Python and employs Qt via PyQt bindings. The system is open source, released under the GPL v2 license. The pre-compiled versions for Windows, Mac OS X, and Linux come with an installer and several packages, including VTK, matplotlib, and ImageMagick. VisTrails also supports user-defined packages.

Orfeo toolbox

In computer science, Orfeo Toolbox (OTB) is a software library for processing images from Earth observation satellites.

<span class="mw-page-title-main">Symbian</span> Discontinued mobile operating system

Symbian is a discontinued mobile operating system (OS) and computing platform designed for smartphones. Symbian was originally developed as a proprietary software OS for PDAs in 1998 by the Symbian Ltd. consortium. Symbian OS is a descendant of Psion's EPOC, and was released exclusively on ARM processors, although an unreleased x86 port existed. Symbian was used by many major mobile phone brands, like Samsung, Motorola, Sony Ericsson, and above all by Nokia. It was also prevalent in Japan by brands including Fujitsu, Sharp and Mitsubishi. As a pioneer that established the smartphone industry, it was the most popular smartphone OS on a worldwide average until the end of 2010, at a time when smartphones were in limited use, when it was overtaken by iOS and Android. It was notably less popular in North America.

References

  1. 1 2 "MeVisLab History". Mevislab.de. Retrieved January 21, 2012.
  2. "MeVisLab 1.0 Release News". Mevislab.de. Archived from the original on March 14, 2012. Retrieved January 21, 2012.
  3. "MeVisLab Features". Mevislab.de. Retrieved January 21, 2012.
  4. "MeVisLab Documentation". Mevislab.de. Retrieved January 21, 2012.
  5. Ritter, F.; Boskamp, T.; Homeyer, A.; Laue, H.; Schwier, M.; Link, F.; Peitgen, H. O. (December 1, 2011). "Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen H-O. Medical Image Analysis: A Visual Approach. IEEE Pulse. 2011; 2(6):60–70". IEEE Pulse. Ieeexplore.ieee.org. 2 (6): 60–70. doi:10.1109/MPUL.2011.942929. PMID   22147070. S2CID   191815089.
  6. Link F, König M, Peitgen H-O; Multi-Resolution Volume Rendering with per Object Shading. In: Kobbelt L, Kuhlen T, Westermann R, eds. Vision Modelling and Visualization. Berlin, Aachen: Aka; 2006:185–191
  7. SoGVR Renderer Module Documentation [ permanent dead link ]
  8. "Heckel F, Schwier M, Peitgen H-O; Object-oriented application development with MeVisLab and Python; Lecture Notes in Informatics (Informatik 2009: Im Focus das Leben), 2009, 154, pp. 1338–1351" (PDF). Retrieved January 21, 2012.
  9. "Open Inventor Reference". Mevislab.de. Retrieved January 21, 2012.
  10. Rexilius J, Jomier J, Spindler W, Link F, König M, Peitgen H-O; Combining a Visual Programming and Rapid Prototyping Platform with ITK. In: Bildverarbeitung für die Medizin. Berlin: Springer, 2005: 460–464
  11. Rexilius, Jan; Spindler, Wolf; Jomier, Julien; Koenig, Matthias; Hahn, Horst; Link, Florian; Peitgen, Heinz-Otto (August 2005). "Rexilius J, Spindler W, Jomier J, Koenig M, Hahn H-K, Link F, Peitgen H-O; A Framework for Algorithm Evaluation and Clinical Application Prototyping using ITK. The Insight Journal 2005; ISC/NA-MIC/MICCAI Workshop on Open-Source Software". The Insight Journal. Insight-journal.org: 12. Retrieved January 21, 2012.
  12. Bitter, I.; Van Uitert, R.; Wolf, I.; Ibáñez, L.; Kuhnigk, J. M. (March 19, 2007). "Bitter I, van Uitert R, Wolf I, Ibanez L, Kuhnigk J-M; Comparison of Four Freely Available Frameworks for Image Processing and Visualization That Use ITK; IEEE Trans Visual Comput Graphics,13(3): 483–493, 2007 May/June". IEEE Transactions on Visualization and Computer Graphics. Ieeexplore.ieee.org. 13 (3): 483–93. doi:10.1109/TVCG.2007.1001. PMID   17356215. S2CID   16052252.
  13. Koenig M, Spindler W, Rexilius J, Jomier J, Link F, Peitgen H-O; Embedding VTK and ITK into a Visual Programming and Rapid Prototyping Platform. In: Proceedings of SPIE – Volume 6141 Medical Imaging 2006 Image Processing. Bellingham: SPIE, 2006: in press
  14. VTK Module Reference [ permanent dead link ]
  15. "MeVisLab Reference Manual". Mevislab.de. September 3, 2011. Retrieved January 21, 2012.
  16. http://isgwww.cs.uni-magdeburg.de/visualisierung/wiki/lib/exe/fetch.php?media=files:animation_exploration:muehler_2010_eurovis.pdf [ bare URL PDF ]
  17. "Rieder C, Schwier M, Weihusen A, Zidowitz S, Peitgen, H-O; Visualization of Risk Structures for Interactive Planning of Image Guided Radiofrequency Ablation of Liver Tumors; SPIE Medical Imaging: Visualization, Image-Guided Procedures, and Modeling, Orlando, 2009" (PDF). Retrieved January 21, 2012.
  18. Zidowitz, S.; Hansen, C.; Schlichting, S.; Kleemann, M.; Peitgen, H. -O. (2009). "Software Assistance for Intra-Operative Guidance in Liver Surgery". IFMBE Proceedings. Springerlink.com. 25/6: 205–208. doi:10.1007/978-3-642-03906-5_56. ISBN   978-3-642-03905-8.
  19. "Hansen C, Lindow B, Zidowitz S, Schenk A, Peitgen H-O; Towards Automatic Generation of Resection Surfaces for Liver Surgery Planning; Proceedings of Computer Assisted Radiology and Surgery (CARS) 2010, 5 (Suppl. 1), pp. 119–120" (PDF). Retrieved January 21, 2012.
  20. "Liver projects at Fraunhofer MEVIS". Mevis.de. Archived from the original on March 14, 2012. Retrieved January 21, 2012.
  21. "Dicken V, Kuhnigk J-M, Bornemann L, Zidowitz S, Krass S, Peitgen H-O; Novel CT data analysis and visualization techniques for risk assessment and planning of thoracic surgery in oncology patients; in H.U. Lemke, K. Inamura, K. Doi, M.W. Vannier, and A.G. Farman, editors, Proc CARS: Computer Assisted Radiology and Surgery, volume 1281 of Computer Assisted Radiology and Surgery". International Congress Series. 1281: 783–787. June 22, 2005. doi:10.1016/j.ics.2005.03.203.
  22. "Lung projects at Fraunhofer MEVIS". Mevis.de. Archived from the original on March 14, 2012. Retrieved January 21, 2012.
  23. "Rieder C, Görge H-H, Ritter F, Hahn H-K, Peitgen H-O; Efficient Visualization of Risk Structures along Virtual Access Paths for Neurosurgical Planning; 59th Annual Meeting of the German Society of Neurosurgery (DGNC), Würzburg, 2008" (PDF). Retrieved January 21, 2012.
  24. "Neuro projects at Fraunhofer MEVIS". Mevis.de. Archived from the original on March 14, 2012. Retrieved January 21, 2012.
  25. "Breast projects at Fraunhofer MEVIS". Mevis.de. Archived from the original on March 14, 2012. Retrieved January 21, 2012.
  26. Hahn H-K, Harz M-T, Seyffarth H, Zöhrer F, Böhler T, Filippatos K, Wang L, Homeyer A, Ritter F, Laue H, Günther M, Twellmann T, Tabár L, Bick U, Schilling K; Concepts for Efficient and Reliable Multi-Modal Breast Image Reading; International Workshop on Digital Mammography (IWDM 2010, June 16–18, Girona, Spain), pp.
  27. "Visual computing for medical diagnosis and treatment" (PDF). Retrieved January 21, 2012.
  28. "Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms" (PDF). Retrieved January 21, 2012.
  29. "Cardio projects at Fraunhofer MEVIS". Mevis.de. Retrieved January 21, 2012.
  30. Bolte, H; Jahnke, T; Schäfer, FK; Wenke, R; Hoffmann, B; Freitag-Wolf, S; Dicken, V; Kuhnigk, JM; Lohmann, J; Voss, S; Knöss, N; Heller, M; Biederer, J (2007). "Interobserver-variability of lung nodule volumetry considering different segmentation algorithms and observer training levels". Eur J Radiol. 64 (2): 285–95. doi:10.1016/j.ejrad.2007.02.031. PMID   17433595.
  31. "Rieder C, Weihusen A, Schumann C, Zidowitz S, Peitgen H-O; Visual Support for Interactive Post-Interventional Assessment of Radiofrequency Ablation Therapy; Computer Graphics Forum (Special Issue on Eurographics Symposium on Visualization) 29, 3 (1093–1102), 2010" (PDF). Retrieved January 21, 2012.
  32. "Klein J, Bartz D, Friman O, Hadwiger M, Preim B, Ritter F, Vilanova A, Zachmann G; Advanced Algorithms in Medical Computer Graphics; Eurographics 2008, Crete, April 14–18. State-of-the-Art Report (EG-STAR'08)" (PDF). Retrieved January 21, 2012.
  33. Felix Ritter. "Ritter F; Visual Programming for Prototyping of Medical Applications; IEEE Visualization 2007, Sacramento, October 28 – November 1. Tutorial: "Introduction to Visual Medicine: Techniques, Applications and Software" by Dirk Bartz, Klaus Mueller, Felix Ritter, Bernhard Preim, and Karel Zuiderveld". Mevis-research.de. Retrieved January 21, 2012.
  34. Bornemann L, Dicken V, Kuhnigk J-M, Beyer F, Shin H, Bauknecht C, Diehl V, Fabel-Schulte M, Meier S, Kress O, Krass S, Peitgen H-O; Software Assistance for Quantitative Therapy Monitoring in Oncology; Proc Workshop on Medical Image Processing: Challenges in Clinical Oncology: 40–46, 2006 ]
  35. "Mühler K, Tietjen C, Ritter F, Preim B; The Medical Exploration Toolkit: An Efficient Support for Visual Computing in Surgical Planning and Training; IEEE Transactions on Visualization and Computer Graphics (133–146), Los Alamitos, CA, USA, 2010" (PDF). Retrieved January 21, 2012.
  36. Newe, A; Ganslandt, T (2013). "Simplified Generation of Biomedical 3D Surface Model Data for Embedding into 3D Portable Document Format (PDF) Files for Publication and Education". PLOS ONE. 8 (11): e79004. Bibcode:2013PLoSO...879004N. doi: 10.1371/journal.pone.0079004 . PMC   3829830 . PMID   24260144.
  37. 1 2 "MeVisLab Versions and Licensing". Mevislab.de. Retrieved January 21, 2012.

Further reading