Melvyn A. Goodale

Last updated
Melvyn Goodale
Photo of Melvyn Goodale taken in 2008.jpg
Born
Melvyn Alan Goodale

(1943-01-22) January 22, 1943 (age 80) [1]
Leigh-on-Sea, Essex, England
Awards FRS (2013)
Scientific career
Fields Neuroscience
Institutions
Website psychology.uwo.ca/faculty/goodale

Melvyn Alan Goodale FRSC, FRS is a Canadian neuroscientist. He was the founding Director of the Brain and Mind Institute at the University of Western Ontario where he holds the Canada Research Chair in Visual Neuroscience. [2] He holds appointments in the Departments of Psychology, Physiology & Pharmacology, and Ophthalmology at Western. Goodale's research focuses on the neural substrates of visual perception and visuomotor control.

Contents

Biography

Goodale was born in Leigh-on-Sea, Essex, England in 1943. He emigrated with his parents to Calgary, Alberta, Canada in 1949. He received a Bachelor of Arts degree in Psychology from the University of Alberta at Calgary in 1963 and a Master of Arts degree in Psychology from the University of Calgary in 1966. He left Calgary in 1966 for London Ontario where he completed a PhD in Psychology at the University of Western Ontario in 1969. Goodale then returned to the UK where he was a Postdoctoral Fellow from 1969 to 1971 in the Department of Experimental Psychology at the University of Oxford, under the supervision of Lawrence Weiskrantz. Following his postdoctoral research at Oxford, Goodale accepted a position in the School of Psychology at the University of St. Andrews in Scotland. In 1977, he went back to Canada to take up a position at the University of Western Ontario, where he has remained ever since.

Research

Goodale was a pioneer in the study of the neural substrates of visuomotor control, first in animals [3] and later in humans. [4] Goodale’s early work in the 1980s, in which he demonstrated that visual perception is functionally independent of the visual control of action, [5] laid the foundation for the ‘duplex’ account of high-level vision which he developed later, together with his long-time colleague, David Milner (originally based at the University of St. Andrews but now at Durham University). In a short paper, Goodale and Milner proposed that the distinction between vision-for-perception and vision-for-action could be mapped onto the two streams of visual projections arising from early visual areas in the primate cerebral cortex: the ventral stream which projects to inferotemporal cortex and the dorsal stream which projects to the posterior parietal cortex. [6] This account provides a convincing resolution to conflicting accounts of visual function that has characterized much of the work in the field for the last one hundred years. Over the last decade, Goodale has led much of neuroimaging and psychophysical research that has refined and extended the two-visual-systems proposal. These ideas have had an enormous influence in the life sciences and medicine. The two-visual-systems proposal is now part of almost every textbook in vision, cognitive neuroscience, and psychology. [3] [4] [5] [6] [7] [8] [9] [10] [11]

According to Goodale and Milner’s two visual systems model, visual perception uses relative metrics and scene-based frames of reference whereas the visual control of action uses real-world metrics and egocentric frames of reference. Support for this idea comes from work showing that the scaling of grasping movements directed towards objects embedded in pictorial illusions, such as the Ebbinghaus illusion [7] and the Ponzo illusion, [11] escapes the effects of these illusions. In other words, the opening between the index finger and thumb is scaled to the real not the apparent size of the target object as the hand approaches the object.

Goodale has also argued that actions such as grasping, which are mediated by dorsal-stream mechanisms, take place in real time and are directed at visible objects. We rarely act on objects after a delay when they are no longer visible – and when we do, we are simply pantomiming the real action using a memory of the object that we perceived earlier derived from ventral-stream processing. Thus, when a delay is introduced between viewing a display and initiating the grasping movement, the scaling of the grip aperture is now sensitive to illusions. [8] [11]

In recent years, Goodale has been using functional magnetic resonance imaging (fMRI) to investigate activity in the dorsal and ventral streams during the performance of visually guided actions. [9] He and his research team have shown that grasping a visible object results in selective activation in the dorsal stream without any grasp-related activity in the ventral stream. This suggests that the analysis of an object’s shape, size, and orientation for grasping is carried out in the dorsal stream independently of any contribution from areas in the ventral stream, such as the lateral occipital complex, that have been shown to be involved in object recognition. Goodale has also used fMRI to study of object recognition and visually-guided grasping in a patient with damage to the ventral stream. [10] These and other neuroimaging studies of object recognition and grasping in the Goodale laboratory have provided additional support for the proposed division of labour between the dorsal and ventral streams. Recent advances in understanding of human visuomotor control [12] along with major advances in fMRI neural network analysis [13] will likely expand on the rather simplistic view of the dorsal and ventral streams, integrating them into large scale whole brain networks.

Awards and honours

Goodale is an honorary fellow of the Wolfson Research Institute at Durham University. [14] In 1999, the Canadian Society for Brain, Behaviour and Cognitive Science gave him their Donald O. Hebb Distinguished Contribution Award. [15] He became a fellow of the Royal Society of Canada in 2001 [16] and the Royal Society in 2013. [17] In 2008, he won the Richard C. Tees Award for distinguished leadership from the CSBBCS. [18]

Goodale was elected a Fellow of the Royal Society of London in 2013. His nomination reads:

Goodale is one of the world’s leading visual neuroscientists. He was a pioneer in the study of the neural substrates of visuomotor control, first in animals and later in humans. He has demonstrated that the visual control of action is functionally independent of visual perception. With a series of elegant experiments he has refined and extended the proposal that there are two visual systems, and his account is now part of almost every textbook in vision, cognitive neuroscience, and psychology. [19]

Related Research Articles

<span class="mw-page-title-main">Visual cortex</span> Region of the brain that processes visual information

The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus and then reaches the visual cortex. The area of the visual cortex that receives the sensory input from the lateral geniculate nucleus is the primary visual cortex, also known as visual area 1 (V1), Brodmann area 17, or the striate cortex. The extrastriate areas consist of visual areas 2, 3, 4, and 5.

<span class="mw-page-title-main">Parietal lobe</span> Part of the brain responsible for sensory input and some language processing

The parietal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The parietal lobe is positioned above the temporal lobe and behind the frontal lobe and central sulcus.

A mental image is an experience that, on most occasions, significantly resembles the experience of 'perceiving' some object, event, or scene, but occurs when the relevant object, event, or scene is not actually present to the senses. There are sometimes episodes, particularly on falling asleep and waking up, when the mental imagery may be dynamic, phantasmagoric and involuntary in character, repeatedly presenting identifiable objects or actions, spilling over from waking events, or defying perception, presenting a kaleidoscopic field, in which no distinct object can be discerned. Mental imagery can sometimes produce the same effects as would be produced by the behavior or experience imagined.

<span class="mw-page-title-main">Pulvinar nuclei</span>

The pulvinar nuclei or nuclei of the pulvinar are the nuclei located in the thalamus. As a group they make up the collection called the pulvinar of the thalamus, usually just called the pulvinar.

<span class="mw-page-title-main">Language processing in the brain</span> How humans use words to communicate

In psycholinguistics, language processing refers to the way humans use words to communicate ideas and feelings, and how such communications are processed and understood. Language processing is considered to be a uniquely human ability that is not produced with the same grammatical understanding or systematicity in even human's closest primate relatives.

<span class="mw-page-title-main">Ponzo illusion</span> Geometrical-optical illusion

The Ponzo illusion is a geometrical-optical illusion that was first demonstrated by the Italian psychologist Mario Ponzo (1882–1960) in 1911. He suggested that the human mind judges an object's size based on its background. He showed this by drawing two identical lines across a pair of converging lines, similar to railway tracks. The upper line looks longer because we interpret the converging sides according to linear perspective as parallel lines receding into the distance. In this context, we interpret the upper line as though it were farther away, so we see it as longer – a farther object would have to be longer than a nearer one for both to produce retinal images of the same size.

The two-streams hypothesis is a model of the neural processing of vision as well as hearing. The hypothesis, given its initial characterisation in a paper by David Milner and Melvyn A. Goodale in 1992, argues that humans possess two distinct visual systems. Recently there seems to be evidence of two distinct auditory systems as well. As visual information exits the occipital lobe, and as sound leaves the phonological network, it follows two main pathways, or "streams". The ventral stream leads to the temporal lobe, which is involved with object and visual identification and recognition. The dorsal stream leads to the parietal lobe, which is involved with processing the object's spatial location relative to the viewer and with speech repetition.

Visual agnosia is an impairment in recognition of visually presented objects. It is not due to a deficit in vision, language, memory, or intellect. While cortical blindness results from lesions to primary visual cortex, visual agnosia is often due to damage to more anterior cortex such as the posterior occipital and/or temporal lobe(s) in the brain.[2] There are two types of visual agnosia: apperceptive agnosia and associative agnosia.

<span class="mw-page-title-main">Ebbinghaus illusion</span> Optical illusion

The Ebbinghaus illusion or Titchener circles is an optical illusion of relative size perception. Named for its discoverer, the German psychologist Hermann Ebbinghaus (1850–1909), the illusion was popularized in the English-speaking world by Edward B. Titchener in a 1901 textbook of experimental psychology, hence its alternative name. In the best-known version of the illusion, two circles of identical size are placed near to each other, and one is surrounded by large circles while the other is surrounded by small circles. As a result of the juxtaposition of circles, the central circle surrounded by large circles appears smaller than the central circle surrounded by small circles.

<span class="mw-page-title-main">Intraparietal sulcus</span> Sulcus on the lateral surface of the parietal lobe

The intraparietal sulcus (IPS) is located on the lateral surface of the parietal lobe, and consists of an oblique and a horizontal portion. The IPS contains a series of functionally distinct subregions that have been intensively investigated using both single cell neurophysiology in primates and human functional neuroimaging. Its principal functions are related to perceptual-motor coordination and visual attention, which allows for visually-guided pointing, grasping, and object manipulation that can produce a desired effect.

Vision for perception and vision for action in neuroscience literature refers to two types of visual processing in the brain: visual processing to obtain information about the features of objects such as color, size, shape versus processing needed to guide movements such as catching a baseball. An idea is currently debated that these types of processing are done by anatomically different brain networks. Ventral visual stream subserves vision for perception, whereas dorsal visual stream subserves vision for action. This idea finds support in clinical research and animal experiments.

Oliver John Braddick, was a British developmental psychologist who researched infant visual perception. He frequently collaborated with his wife Janette Atkinson.

The concept of motor cognition grasps the notion that cognition is embodied in action, and that the motor system participates in what is usually considered as mental processing, including those involved in social interaction. The fundamental unit of the motor cognition paradigm is action, defined as the movements produced to satisfy an intention towards a specific motor goal, or in reaction to a meaningful event in the physical and social environments. Motor cognition takes into account the preparation and production of actions, as well as the processes involved in recognizing, predicting, mimicking, and understanding the behavior of other people. This paradigm has received a great deal of attention and empirical support in recent years from a variety of research domains including embodied cognition, developmental psychology, cognitive neuroscience, and social psychology.

The neuroanatomy of memory encompasses a wide variety of anatomical structures in the brain.

Cultural neuroscience is a field of research that focuses on the interrelation between a human's cultural environment and neurobiological systems. The field particularly incorporates ideas and perspectives from related domains like anthropology, psychology, and cognitive neuroscience to study sociocultural influences on human behaviors. Such impacts on behavior are often measured using various neuroimaging methods, through which cross-cultural variability in neural activity can be examined.

Visual object recognition refers to the ability to identify the objects in view based on visual input. One important signature of visual object recognition is "object invariance", or the ability to identify objects across changes in the detailed context in which objects are viewed, including changes in illumination, object pose, and background context.

Patient DF is a woman with visual apperceptive agnosia who has been studied extensively due to the implications of her behavior for the two streams theory of visual perception. Though her vision remains intact, she has trouble visually locating and identifying objects. Her agnosia is thought to be caused by a bilateral lesion to her lateral occipital cortex, an area thought by dual-stream proponents to be the ventral "object recognition" stream. Despite being unable to identify or recognize objects, DF can still use visual input to guide her action.

James Van Loan Haxby is an American neuroscientist. He currently is a professor in the Department of Psychological and Brain Sciences at Dartmouth College and the Director for the Dartmouth Center for Cognitive Neuroscience. He is best known for his work on face perception and applications of machine learning in functional neuroimaging.

<span class="mw-page-title-main">Doug Crawford</span> Canadian neuroscientist

John Douglas (Doug) Crawford is a Canadian neuroscientist and the scientific director of the Vision: Science to Applications(VISTA) program. He is a professor at York University where he holds the Canada Research Chair in Visuomotor Neuroscience and the title of Distinguished Research Professor in Neuroscience.

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.

References

  1. "GOODALE, Prof. Melvyn Alan". Who's Who 2014, A & C Black, an imprint of Bloomsbury Publishing plc, 2014; online edn, Oxford University Press.(subscription required)
  2. Canada Research Chairs: Melvyn Goodale, retrieved 2012-07-22.
  3. 1 2 Goodale, M. A.; Murison, R. C. C. (1975). "The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat". Brain Research. 88 (2): 243–261. doi:10.1016/0006-8993(75)90388-1. PMID   1148825. S2CID   11432486.
  4. 1 2 Fisk, J. D.; Goodale, M. A. (1985). "The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space". Experimental Brain Research. 60 (1): 159–78. doi:10.1007/BF00237028. PMID   4043274. S2CID   2683067.
  5. 1 2 Goodale, M. A.; Pelisson, D.; Prablanc, C. (1986). "Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement". Nature. 320 (6064): 748–50. Bibcode:1986Natur.320..748G. doi:10.1038/320748a0. PMID   3703000. S2CID   4331401.
  6. 1 2 Goodale, M. A.; Milner, A. D. (1992). "Separate visual pathways for perception and action". Trends in Neurosciences. 15 (1): 20–5. CiteSeerX   10.1.1.207.6873 . doi:10.1016/0166-2236(92)90344-8. PMID   1374953. S2CID   793980.
  7. 1 2 Aglioti, S.; Desouza, J. F. X.; Goodale, M. A. (1995). "Size-contrast illusions deceive the eye but not the hand". Current Biology. 5 (6): 679–85. doi: 10.1016/S0960-9822(95)00133-3 . PMID   7552179. S2CID   206111613.
  8. 1 2 Hu, Y.; Goodale, M. A. (2000). "Grasping after a Delay Shifts Size-Scaling from Absolute to Relative Metrics". Journal of Cognitive Neuroscience. 12 (5): 856–868. doi:10.1162/089892900562462. PMID   11054927. S2CID   31816646.
  9. 1 2 Culham, J. C.; Danckert, S. L.; Souza, J. F. X. D.; Gati, J. S.; Menon, R. S.; Goodale, M. A. (2003). "Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas". Experimental Brain Research. 153 (2): 180–9. doi:10.1007/s00221-003-1591-5. PMID   12961051. S2CID   5236246.
  10. 1 2 James, T. W. (2003). "Ventral occipital lesions impair object recognition but not object-directed grasping: An fMRI study". Brain. 126 (11): 2463–75. doi: 10.1093/brain/awg248 . PMID   14506065.
  11. 1 2 3 Ganel, T.; Tanzer, M.; Goodale, M. A. (2008). "A Double Dissociation Between Action and Perception in the Context of Visual Illusions: Opposite Effects of Real and Illusory Size". Psychological Science. 19 (3): 221–5. doi:10.1111/j.1467-9280.2008.02071.x. PMID   18315792. S2CID   15679825.
  12. Giese, M. A.; Rizzolatti, G. (2015). "Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations". Neuron. 88 (1): 167–80. doi: 10.1016/j.neuron.2015.09.040 . PMID   26447579.
  13. Yuste, R. (2016). "From the neuron doctrine to neural networks". Nature Reviews Neuroscience. 16 (8): 487–97. doi:10.1038/nrn3962. PMID   26152865. S2CID   3342801.
  14. Honorary Fellow - Professor M A Goodale, FRSC, Durham University, retrieved 2012-07-22.
  15. The 1999 Donald O. Hebb Award from the Canadian Society for Brain, Behaviour and Cognitive Sciences Presented to Dr. Melvyn Goodale Archived 2008-11-20 at the Wayback Machine , CSBBCS, retrieved 2012-07-22.
  16. Royal Society of Canada membership listing, retrieved 2012-07-22.
  17. Royal Society membership listing, retrieved 2013-05-12.
  18. 2008 Richard C. Tees Distinguished Leadership Award Winner Dr. Melvyn Goodale Archived 2012-11-28 at archive.today , CSBBCS, retrieved 2012-07-22.
  19. http://royalsociety.org/people/melvyn-goodale/ [ dead link ]