Martin Green | |
---|---|
Born | Martin Andrew Green 20 July 1948 Brisbane, Australia |
Citizenship | Australian |
Alma mater |
|
Awards |
|
Scientific career | |
Fields | |
Thesis | Properties and applications of the metal-insulator-semiconductor (MIS) tunnel diode (1974) |
Doctoral advisor | John Shewchun [1] |
Website | research |
Martin Andrew Green AM FRS FAA (born 20 July 1948) is an Australian engineer and professor at the University of New South Wales who works on solar energy. [2] [3] [4] [5] [6] [7] He was awarded the 2021 Japan Prize for his achievements in the "Development of High-Efficiency Silicon Photovoltaic Devices". [8] He is editor-in-chief of the academic journal Progress in Photovoltaics . [9]
Green was born in Brisbane on 20 July 1948, [10] and was educated at the selective Brisbane State High School, graduated from University of Queensland and completed his PhD on a Commonwealth Scholarship at McMaster University in Canada, where he specialised in solar energy.
In 1974, at the University of New South Wales, he initiated the Solar Photovoltaics Group which soon worked on the development of silicon solar cells. [2]
In the early 1980s, Green developed numerous technologies that increased the efficiency of solar power generation. [11] : 143 Many of Green's students during this period later became significant in the development of China's solar industry, including Shi Zhengrong. [11] : 143
Green has published several books on solar cells both for popular science and deep research. The "buried contact solar cell" was developed at UNSW in 1984. [12] Green also served on the Board of the Sydney-based Pacific Solar Pty Ltd (later known as CSG Solar), as Research Director.[ citation needed ]
Green has received many awards including:
His nomination for the Royal Society reads:
Professor Green is cited for his extensive and distinguished contributions to photovoltaic science and technology. These include identifying the fundamental limits upon silicon solar cell performance and then leading his team to demonstrate experimental devices approaching this limit, with 25% cell efficiency now demonstrated. This is over 50% relatively higher in performance than at the beginning of his work. He has also developed innovative commercial versions of these high performance devices and pioneered the field of "third generation" photovoltaics, investigating advanced photovoltaic device concepts targeting Carnot-like solar conversion efficiencies. [19]
Eli Yablonovitch is an American physicist and engineer who, along with Sajeev John, founded the field of photonic crystals in 1987. He and his team were the first to create a 3-dimensional structure that exhibited a full photonic bandgap, which has been named Yablonovite. In addition to pioneering photonic crystals, he was the first to recognize that a strained quantum-well laser has a significantly reduced threshold current compared to its unstrained counterpart. This is now employed in the majority of semiconductor lasers fabricated throughout the world. His seminal paper reporting inhibited spontaneous emission in photonic crystals is among the most highly cited papers in physics and engineering.
In the 19th century, it was observed that the sunlight striking certain materials generates detectable electric current – the photoelectric effect. This discovery laid the foundation for solar cells. Solar cells have gone on to be used in many applications. They have historically been used in situations where electrical power from the grid was unavailable.
A solar cell, also known as a photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. It is a form of photoelectric cell, a device whose electrical characteristics vary when it is exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as "solar panels". Almost all commercial PV cells consist of crystalline silicon, with a market share of 95%. Cadmium telluride thin-film solar cells account for the remainder. The common single-junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 to 0.6 volts.
Allen M. Barnett was an American research professor of electrical engineering at the University of Delaware. He was the principal investigator of the DARPA-funded Consortium for Very High Efficiency Solar cells. Barnett was the founder and CEO of solar-cell producer Astropower, Inc. He was also a Professor of Advanced Photovoltaics at the University of New South Wales (UNSW) School of Photovoltaic and Renewable Energy Engineering (SPREE) in Sydney Australia.
Andrew Blakers is a Professor of renewable energy engineering at the Australian National University. He has contributed to several innovations in solar photovoltaic technology, including PERC solar cells. Blakers has secured many research grants and won several awards.
Third-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley–Queisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions and thin film cells. Common third-generation systems include multi-layer ("tandem") cells made of amorphous silicon or gallium arsenide, while more theoretical developments include frequency conversion,, hot-carrier effects and other multiple-carrier ejection techniques.
The Faculty of Engineering is a constituent body of the University of New South Wales (UNSW), Australia. UNSW was formed on 1 July 1949, and the Faculty was established on 8 May 1950 with the inaugural meeting of the Faculty taking place on 7 June 1950. It was one of the first three University faculties which were established by Council, and was initially formed of four departments including Electrical Engineering, Mechanical Engineering, Civil Engineering and Mining Engineering, headed by Dean Professor Harold Brown.
Stuart Wenham was, at the time of his death, the director of the ARC Centre of Excellence in Advanced Silicon Photovoltaics and Photonics and Director of Academic Studies of the School of Photovoltaic and Renewable Energy Engineering at the University of New South Wales.
Monocrystalline silicon, often referred to as single-crystal silicon or simply mono-Si, is a critical material widely used in modern electronics and photovoltaics. As the foundation for silicon-based discrete components and integrated circuits, it plays a vital role in virtually all modern electronic equipment, from computers to smartphones. Additionally, mono-Si serves as a highly efficient light-absorbing material for the production of solar cells, making it indispensable in the renewable energy sector.
Thin-film solar cells are a type of solar cell made by depositing one or more thin layers of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon.
A copper indium gallium selenide solar cell is a thin-film solar cell used to convert sunlight into electric power. It is manufactured by depositing a thin layer of copper indium gallium selenide solid solution on glass or plastic backing, along with electrodes on the front and back to collect current. Because the material has a high absorption coefficient and strongly absorbs sunlight, a much thinner film is required than of other semiconductor materials.
There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be categorized into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as more efficient energy converters from light energy into electric current or light absorbers and charge carriers.
Larry C. Olsen was a pioneer in the commercialization of betavoltaic technology. While working for the McDonnell Douglas Corporation in the 1970s, Olsen lead the development of the first commercially available betavoltaic nuclear battery. Several hundred of these batteries were fabricated and a large number were used to power implanted heart pacemakers. Olsen has published more than 80 articles in the fields of betavoltaics, photovoltaics, thermoelectric materials, and solid state physics. He has also earned several awards for his research, including the R&D 100 Award, presented each year by R&D Magazine to identify the 100 most significant, newly introduced research and development advances in multiple disciplines.
Antonio Luque López is a Spanish scientist and entrepreneur in the field of photovoltaic solar energy. In 1979 he founded the Institute of Solar Energy of the Technical University of Madrid (IES-UPM) and was its director till his retirement in 2017; he is currently its honorary president as well as professor emeritus in this university. He invented the bifacial solar cell in the late 1970s, today one of the mainstream solar cell technologies, and founded Isofoton in 1981 for its industrial production. He is, arguably, one of the fathers of the science and technology of concentrator photovoltaics and has been active in the research and development of high-efficiency photovoltaic conversion devices, inventing the intermediate band solar cell.
Photovoltaic and renewable energy engineering is an area of research, development, and demonstration in Australia. Two Australian Research Council Centres play a role.
Michelle Yvonne Simmons is an Australian quantum physicist, recognised for her foundational contributions to the field of atomic electronics.
Henry James Snaith is a professor in physics in the Clarendon Laboratory at the University of Oxford. Research from his group has led to the creation of a new research field, based on halide perovskites for use as solar absorbers. Many individuals who were PhD students and postdoctoral researchers in Snaith's group have now established research groups, independent research portfolios and commercial enterprises. He co-founded Oxford Photovoltaics in 2010 to commercialise perovskite based tandem solar cells.
Anita Ho-Baillie is an Australian scientist who is the John Hooke Chair of Nanoscience at the University of Sydney. Her research considers the development of durable perovskite solar cells and their integration into different applications. She was named as one of the Web of Science's most highly cited researchers in 2019–2022.
David E. Carlson was an American physicist who invented thin film, amorphous silicon based, photovoltaic solar cells.
Xiaojing Hao is an academic and engineer. She completed her PhD in Photovoltaic and Renewable Energy Engineering in 2010 at University of New South Wales. She is currently working as a professor in school of Photovoltaic and Renewable Energy Engineering at University of New South Wales. Her main research focus is in low-cost, high-efficiency thin film solar cells and tandem solar cells. Her research contributes to make photovoltaics cells affordable, greener and more efficient.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link)