Jean-Paul Vincent | |
---|---|
Alma mater | |
Awards |
|
Scientific career | |
Fields | |
Institutions | |
Website | jpvincentlab |
Jean-Paul Vincent is a developmental biologist working at the Francis Crick Institute. [3]
Vincent has conducted work on the Wnt signalling pathways that help to regulate cell-to-cell interactions.
His work on cell signalling and behaviour has led to an improved understanding of diseases such as cancer in which fundamental biological processes are altered. Earlier in his career, he pioneered the use of caged dye technology to trace the cellular development of fruit fly embryos, and established a relationship between the alignment of frog embryos and their so-called subcortical rotation in the egg. [3]
Vincent was elected a Fellow of the Royal Society (FRS) in 2013. His certificate of election reads:
JP Vincent has used his training in mathematics, physics to devise new techniques to solve important problems in developmental biology. Using novel laser-staining methods he discovered the cortical rotation in frog eggs. He then co-invented caged dye technology, adapted it to lineage tracing and showed that, in living Drosophila embryos, cells acquire identity step by step. Later, he introduced an HRP fusion strategy to study trafficking and epithelial organisation in transgenic animals. This allowed him show that endocytic trafficking of Wnts is spatially and temporally regulated. His work has spurred many others to investigate how trafficking modulate signalling pathways [4]
Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism.
Xenopus is a genus of highly aquatic frogs native to sub-Saharan Africa. Twenty species are currently described within it. The two best-known species of this genus are Xenopus laevis and Xenopus tropicalis, which are commonly studied as model organisms for developmental biology, cell biology, toxicology, neuroscience and for modelling human disease and birth defects.
Gastrulation is the stage in the early embryonic development of most animals, during which the blastula, or in mammals the blastocyst, is reorganized into a two-layered or three-layered embryo known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body, and internalized one or more cell types including the prospective gut.
In cellular biology, paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance, as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate extracellular environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain.
The somites are a set of bilaterally paired blocks of paraxial mesoderm that form in the embryonic stage of somitogenesis, along the head-to-tail axis in segmented animals. In vertebrates, somites subdivide into the dermatomes, myotomes, sclerotomes and syndetomes that give rise to the vertebrae of the vertebral column, rib cage, part of the occipital bone, skeletal muscle, cartilage, tendons, and skin.
Somitogenesis is the process by which somites form. Somites are bilaterally paired blocks of paraxial mesoderm that form along the anterior-posterior axis of the developing embryo in segmented animals. In vertebrates, somites give rise to skeletal muscle, cartilage, tendons, endothelium, and dermis.
Organogenesis is the phase of embryonic development that starts at the end of gastrulation and continues until birth. During organogenesis, the three germ layers formed from gastrulation form the internal organs of the organism.
In cellular biology, the Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.
A morphogen is a substance whose non-uniform distribution governs the pattern of tissue development in the process of morphogenesis or pattern formation, one of the core processes of developmental biology, establishing positions of the various specialized cell types within a tissue. More specifically, a morphogen is a signaling molecule that acts directly on cells to produce specific cellular responses depending on its local concentration.
Marc Wallace Kirschner is an American cell biologist and biochemist and the founding chair of the Department of Systems Biology at Harvard Medical School. He is known for major discoveries in cell and developmental biology related to the dynamics and function of the cytoskeleton, the regulation of the cell cycle, and the process of signaling in embryos, as well as the evolution of the vertebrate body plan. He is a leader in applying mathematical approaches to biology. He is the John Franklin Enders University Professor at Harvard University. In 2021 he was elected to the American Philosophical Society.
The primitive streak is a structure that forms in the early embryo in amniotes. In amphibians, the equivalent structure is the blastopore. During early embryonic development, the embryonic disc becomes oval shaped, and then pear-shaped with the broad end towards the anterior, and the narrower region projected to the posterior. The primitive streak forms a longitudinal midline structure in the narrower posterior (caudal) region of the developing embryo on its dorsal side. At first formation, the primitive streak extends for half the length of the embryo. In the human embryo, this appears by stage 6, about 17 days.
In the field of developmental biology, regional differentiation is the process by which different areas are identified in the development of the early embryo. The process by which the cells become specified differs between organisms.
In amniote embryology, the hypoblast is one of two distinct layers arising from the inner cell mass in the mammalian blastocyst, or from the blastodisc in reptiles and birds. The hypoblast gives rise to the yolk sac, which in turn gives rise to the chorion.
Dishevelled (Dsh) is a family of proteins involved in canonical and non-canonical Wnt signalling pathways. Dsh is a cytoplasmic phosphoprotein that acts directly downstream of frizzled receptors. It takes its name from its initial discovery in flies, where a mutation in the dishevelled gene was observed to cause improper orientation of body and wing hairs. There are vertebrate homologs in zebrafish, Xenopus (Xdsh), mice and humans. Dsh relays complex Wnt signals in tissues and cells, in normal and abnormal contexts. It is thought to interact with the SPATS1 protein when regulating the Wnt Signalling pathway.
Symmetry breaking in biology is the process by which uniformity is broken, or the number of points to view invariance are reduced, to generate a more structured and improbable state. Symmetry breaking is the event where symmetry along a particular axis is lost to establish a polarity. Polarity is a measure for a biological system to distinguish poles along an axis. This measure is important because it is the first step to building complexity. For example, during organismal development, one of the first steps for the embryo is to distinguish its dorsal-ventral axis. The symmetry-breaking event that occurs here will determine which end of this axis will be the ventral side, and which end will be the dorsal side. Once this distinction is made, then all the structures that are located along this axis can develop at the proper location. As an example, during human development, the embryo needs to establish where is ‘back’ and where is ‘front’ before complex structures, such as the spine and lungs, can develop in the right location. This relationship between symmetry breaking and complexity was articulated by P.W. Anderson. He speculated that increasing levels of broken symmetry in many-body systems correlates with increasing complexity and functional specialization. In a biological perspective, the more complex an organism is, the higher number of symmetry-breaking events can be found.
Edward Michael De Robertis is an American embryologist and Professor at the University of California, Los Angeles. His work has contributed to the finding of conserved molecular processes of embryonic inductions that result in tissue differentiations during animal development. He was elected to the National Academy of Sciences in 2013, worked for the Howard Hughes Medical Institute for 26 years, and holds a Distinguished Professor at the University of California, Los Angeles. In 2009 Pope Benedict XVI appointed De Robertis to a lifetime position in the Pontifical Academy of Sciences, and in 2022 Pope Francis appointed him Councillor of the Academy for four years.
Neural crest cells are multipotent cells required for the development of cells, tissues and organ systems. A subpopulation of neural crest cells are the cardiac neural crest complex. This complex refers to the cells found amongst the midotic placode and somite 3 destined to undergo epithelial-mesenchymal transformation and migration to the heart via pharyngeal arches 3, 4 and 6.
Sir James Cuthbert Smith is an Emeritus Scientist at the Francis Crick Institute, Honorary Fellow of Christ's College, Cambridge and President of the Council at the Zoological Society of London.
Meng Anming is a Chinese developmental biologist. In 1983 he graduated and received a bachelor degree in agronomy from Southwest Agricultural University, China, followed by working as a research assistant in rice breeding group of the National Rice Research Institute of China. He pursued graduate study from May 1987 to November 1990 under supervision of Dr. David T. Parkin, focusing on investigation of genetic variations in wild birds using DNA fingerprinting, in Department of Genetics, University of Nottingham, UK, and received his Ph.D. degree in July 1991. From November 1990 to November 1992, he did postdoctoral research, working on DNA fingerprinting of farm animals, in the Teaching and Research Group of Animal Biochemistry, College of Biology, Beijing Agricultural University, China, and was then recruited there as associate professor. In March 1996, he joined Dr. Shuo Lin’s lab as visiting scholar and started to work on zebrafish embryonic development at the Institute of Molecular Medicine and Genetics, Medical College of Georgia, USA. He was recruited as full professor in August 1998 by Department of Biological Science and Technology, Tsinghua University, China. He was also director of the Institute of Zoology, the Chinese Academy of Sciences, from 2008 to 2012. In 2007 he was elected a member of Chinese Academy of Sciences, and in 2008 a member of TWAS.
In developmental biology, left-right asymmetry is the process in early embryonic development that breaks the normal symmetry in the bilateral embryo. In vertebrates, left-right asymmetry is established early in development at a structure called the left-right organizer and leads to activation of different signalling pathways on the left and right of the embryo. This in turn causes several organs in adults to develop LR asymmetry, such as the tilt of the heart, the different number of lung lobes on each side of the body, and the position of the stomach and spleen on the right side of the body. If this process does not occur correctly in humans it can result in heterotaxy or situs inversus.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link)