Method of quantum characteristics

Last updated

Quantum characteristics are phase-space trajectories that arise in the phase space formulation of quantum mechanics through the Wigner transform of Heisenberg operators of canonical coordinates and momenta. These trajectories obey the Hamilton equations in quantum form and play the role of characteristics in terms of which time-dependent Weyl's symbols of quantum operators can be expressed. In the classical limit, quantum characteristics reduce to classical trajectories. The knowledge of quantum characteristics is equivalent to the knowledge of quantum dynamics.

Contents

Weyl–Wigner association rule

In Hamiltonian dynamics, classical systems with degrees of freedom are described by canonical coordinates and momenta

that form a coordinate system in the phase space. These variables satisfy the Poisson bracket relations

The skew-symmetric matrix ,

where is the identity matrix, defines nondegenerate 2-form in the phase space. The phase space acquires thereby the structure of a symplectic manifold. The phase space is not metric space, so distance between two points is not defined. The Poisson bracket of two functions can be interpreted as the oriented area of a parallelogram whose adjacent sides are gradients of these functions. Rotations in Euclidean space leave the distance between two points invariant. Canonical transformations in symplectic manifold leave the areas invariant.

In quantum mechanics, the canonical variables are associated to operators of canonical coordinates and momenta

These operators act in Hilbert space and obey commutation relations

Weyl’s association rule [1] extends the correspondence to arbitrary phase-space functions and operators.

Taylor expansion

A one-sided association rule was formulated by Weyl initially with the help of Taylor expansion of functions of operators of the canonical variables

The operators do not commute, so the Taylor expansion is not defined uniquely. The above prescription uses the symmetrized products of the operators. The real functions correspond to the Hermitian operators. The function is called Weyl's symbol of operator .

Under the reverse association , the density matrix turns to the Wigner function. [2] Wigner functions have numerous applications in quantum many-body physics, kinetic theory, collision theory, quantum chemistry.

A refined version of the Weyl–Wigner association rule was proposed by Groenewold [3] and Stratonovich. [4]

Operator basis

The set of operators acting in the Hilbert space is closed under multiplication of operators by -numbers and summation. Such a set constitutes a vector space . The association rule formulated with the use of the Taylor expansion preserves operations on the operators. The correspondence can be illustrated with the following diagram:

Here, and are functions and and are the associated operators.

The elements of basis of are labelled by canonical variables . The commonly used Groenewold-Stratonovich basis looks like

The Weyl–Wigner two-sided association rule for function and operator has the form

The function provides coordinates of the operator in the basis . The basis is complete and orthogonal:

Alternative operator bases are discussed also. [5] The freedom in choice of the operator basis is better known as the operator ordering problem. The coordinates of particle trajectories in phase space depend on the operator basis.

Star-product

The set of operators Op(L2(Rn)) is closed under the multiplication of operators. The vector space is endowed thereby with an associative algebra structure. Given two functions

one can construct a third function,

called the -product. [3] It is given explicitly by

where

is the Poisson operator. The -product splits into symmetric and skew-symmetric parts,

In the classical limit, the -product becomes the dot product. The skew-symmetric part is known as the Moyal bracket. [6] This is the Weyl symbol of the commutator. In the classical limit, the Moyal bracket becomes the Poisson bracket. The Moyal bracket is a quantum deformation of the Poisson bracket. The -product is associative, whereas the -product and the Moyal bracket are not associative.

Quantum characteristics

The correspondence shows that coordinate transformations in the phase space are accompanied by transformations of operators of the canonical coordinates and momenta and vice versa. Let be the evolution operator,

and be the Hamiltonian. Consider the following scheme,

Quantum evolution transforms vectors in the Hilbert space and, under the Wigner association map, coordinates in the phase space. In the Heisenberg representation, the operators of the canonical variables transform as

The phase-space coordinates that correspond to new operators in the old basis are given by

with the initial conditions

The functions specify the quantum phase flow. In the general case, it is canonical to first order in τ. [7]

Star-functions

The set of operators of canonical variables is complete in the sense that any operator can be represented as a function of operators . Transformations

induce, under the Wigner association rule, transformations of phase-space functions,

Using the Taylor expansion, the transformation of function under evolution can be found to be

The composite function defined in such a way is called -function.

The composition law differs from the classical one. However, the semiclassical expansion of around is formally well defined and involves even powers of only. This equation shows that, given how quantum characteristics are constructed, the physical observables can be found without further reference to the Hamiltonian. The functions play the role of characteristics, [8] similarly to the classical characteristics used to solve the classical Liouville equation.

The quantum Liouville equation

The Wigner transform of the evolution equation for the density matrix in the Schrödinger representation leads to a quantum Liouville equation for the Wigner function. The Wigner transform of the evolution equation for operators in the Heisenberg representation,

leads to the same equation with the opposite (plus) sign in the right-hand side:

-function solves this equation in terms of quantum characteristics:

Similarly, the evolution of the Wigner function in the Schrödinger representation is given by

The Liouville theorem of classical mechanics fails, to the extent that, locally, the phase space volume is not preserved in time. In fact, the quantum phase flow does not preserve all differential forms defined by exterior powers of .

The Wigner function represents a quantum system in a more general form than the wave function. Wave functions describe pure states, while the Wigner function characterizes ensembles of quantum states. Any Hermitian operator can be diagonalized:

.

Those operators whose eigenvalues are non-negative and sum to a finite number can be mapped to density matrices, i.e., to some physical states. The Wigner function is an image of the density matrix, so the Wigner functions admit a similar decomposition:

with and

.

Quantum Hamilton's equations

The Quantum Hamilton's equations can be obtained applying the Wigner transform to the evolution equations for Heisenberg operators of canonical coordinates and momenta,

The right-hand side is calculated like in the classical mechanics. The composite function is, however, -function. The -product violates canonicity of the phase flow beyond the first order in .

Conservation of Moyal bracket

The antisymmetrized products of even number of operators of canonical variables are c-numbers as a consequence of the commutation relations. These products are left invariant by unitary transformations, which leads, in particular, to the relation

In general, the antisymmetrized product

is also invariant, that is, it does not depend on time, and moreover does not depend on the coordinate.

Phase-space transformations induced by the evolution operator preserve the Moyal bracket and do not preserve the Poisson bracket, so the evolution map

is not canonical beyond O(τ). [8] The first order in τ defines the algebra of the transformation group. As previously noted, the algebra of canonical transformations of classical mechanics coincides with the algebra of unitary transformations of quantum mechanics. These two groups, however, are different because the multiplication operations in classical and quantum mechanics are different.

Transformation properties of canonical variables and phase-space functions under unitary transformations in the Hilbert space have important distinctions from the case of canonical transformations in the phase space.

Composition law

Quantum characteristics can hardly be treated visually as trajectories along which physical particles move. The reason lies in the star-composition law

which is non-local and is distinct from the dot-composition law of classical mechanics.

Energy conservation

The energy conservation implies

where

is Hamilton's function. In the usual geometric sense, is not conserved along quantum characteristics.

Summary

The origin of the method of characteristics can be traced back to Heisenberg’s matrix mechanics. Suppose that we have solved in the matrix mechanics the evolution equations for the operators of the canonical coordinates and momenta in the Heisenberg representation. These operators evolve according to

It is known that for any operator one can find a function f (ξ) through which is represented in the form . The same operator at time τ is equal to

This equation shows that are characteristics that determine the evolution for all of the operators in Op(L2(Rn)). This property is fully transferred to the phase space upon deformation quantization and, in the limit of ħ → 0, to the classical mechanics.

Classical dynamics vs. Quantum dynamics
Liouville equation
First-order PDEInfinite-order PDE
Hamilton's equations
Finite-order ODEInfinite-order PDE
Initial conditionsInitial conditions
Composition law
Dot-composition-composition
Invariance
Poisson bracketMoyal bracket
Energy conservation
Dot-composition-composition
Solution to Liouville equation
Dot-composition-composition

Table compares properties of characteristics in classical and quantum mechanics. PDE and ODE indicate partial differential equations and ordinary differential equations, respectively. The quantum Liouville equation is the Weyl–Wigner transform of the von Neumann evolution equation for the density matrix in the Schrödinger representation. The quantum Hamilton equations are the Weyl–Wigner transforms of the evolution equations for operators of the canonical coordinates and momenta in the Heisenberg representation.

In classical systems, characteristics usually satisfy first-order ODEs, e.g., classical Hamilton's equations, and solve first-order PDEs, e.g., the classical Liouville equation. Functions are also characteristics, despite both and obeying infinite-order PDEs.

The quantum phase flow contains all of the information about the quantum evolution. Semiclassical expansion of quantum characteristics and -functions of quantum characteristics in a power series in ħ allows calculation of the average values of time-dependent physical observables by solving a finite-order coupled system of ODEs for phase space trajectories and Jacobi fields. [9] [10] The order of the system of ODEs depends on the truncation of the power series. The tunneling effect is nonperturbative in ħ and is not captured by the expansion. The density of the quantum probability fluid is not preserved in phase-space, as the quantum fluid diffuses. [6] Quantum characteristics must be distinguished from the trajectories of the De Broglie–Bohm theory, [11] the trajectories of the path-integral method in phase space for the amplitudes [12] and the Wigner function, [13] [14] and the Wigner trajectories. [5] Thus far, only a few quantum systems have been explicitly solved using the method of quantum characteristics. [15] [16] [17]

See also

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

<span class="mw-page-title-main">Instanton</span> Solitons in Euclidean spacetime

An instanton is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

<span class="mw-page-title-main">Elliptic operator</span> Type of differential operator

In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions.

Bosonic string theory is the original version of string theory, developed in the late 1960s and named after Satyendra Nath Bose. It is so called because it contains only bosons in the spectrum.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">Wigner quasiprobability distribution</span> Wigner distribution function in physics as opposed to in signal processing

The Wigner quasiprobability distribution is a quasiprobability distribution. It was introduced by Eugene Wigner in 1932 to study quantum corrections to classical statistical mechanics. The goal was to link the wavefunction that appears in Schrödinger's equation to a probability distribution in phase space.

In quantum mechanics, the Wigner–Weyl transform or Weyl–Wigner transform is the invertible mapping between functions in the quantum phase space formulation and Hilbert space operators in the Schrödinger picture.

In mathematics, and more specifically in partial differential equations, Duhamel's principle is a general method for obtaining solutions to inhomogeneous linear evolution equations like the heat equation, wave equation, and vibrating plate equation. It is named after Jean-Marie Duhamel who first applied the principle to the inhomogeneous heat equation that models, for instance, the distribution of heat in a thin plate which is heated from beneath. For linear evolution equations without spatial dependency, such as a harmonic oscillator, Duhamel's principle reduces to the method of variation of parameters technique for solving linear inhomogeneous ordinary differential equations. It is also an indispensable tool in the study of nonlinear partial differential equations such as the Navier–Stokes equations and nonlinear Schrödinger equation where one treats the nonlinearity as an inhomogeneity.

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations. The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution and operator multiplication is replaced by a star product.

Supersymmetric theory of stochastic dynamics or stochastics (STS) is an exact theory of stochastic (partial) differential equations (SDEs), the class of mathematical models with the widest applicability covering, in particular, all continuous time dynamical systems, with and without noise. The main utility of the theory from the physical point of view is a rigorous theoretical explanation of the ubiquitous spontaneous long-range dynamical behavior that manifests itself across disciplines via such phenomena as 1/f, flicker, and crackling noises and the power-law statistics, or Zipf's law, of instantonic processes like earthquakes and neuroavalanches. From the mathematical point of view, STS is interesting because it bridges the two major parts of mathematical physics – the dynamical systems theory and topological field theories. Besides these and related disciplines such as algebraic topology and supersymmetric field theories, STS is also connected with the traditional theory of stochastic differential equations and the theory of pseudo-Hermitian operators.

Phase-space representation of quantum state vectors is a formulation of quantum mechanics elaborating the phase-space formulation with a Hilbert space. It "is obtained within the framework of the relative-state formulation. For this purpose, the Hilbert space of a quantum system is enlarged by introducing an auxiliary quantum system. Relative-position state and relative-momentum state are defined in the extended Hilbert space of the composite quantum system and expressions of basic operators such as canonical position and momentum operators, acting on these states, are obtained." Thus, it is possible to assign a meaning to the wave function in phase space, , as a quasiamplitude, associated to a quasiprobability distribution.

Phase space crystal is the state of a physical system that displays discrete symmetry in phase space instead of real space. For a single-particle system, the phase space crystal state refers to the eigenstate of the Hamiltonian for a closed quantum system or the eigenoperator of the Liouvillian for an open quantum system. For a many-body system, phase space crystal is the solid-like crystalline state in phase space. The general framework of phase space crystals is to extend the study of solid state physics and condensed matter physics into phase space of dynamical systems. While real space has Euclidean geometry, phase space is embedded with classical symplectic geometry or quantum noncommutative geometry.

References

  1. Weyl, H. (1927). "Quantenmechanik und gruppentheorie". Zeitschrift für Physik. 46 (1–2): 1–46. Bibcode:1927ZPhy...46....1W. doi:10.1007/BF02055756. S2CID   121036548.
  2. Wigner, E. P. (1932). "On the quantum correction for thermodynamic equilibrium". Physical Review. 40 (5): 749–759. Bibcode:1932PhRv...40..749W. doi:10.1103/PhysRev.40.749. hdl: 10338.dmlcz/141466 .
  3. 1 2 Groenewold, H. J. (1946). "On the principles of elementary quantum mechanics". Physica. 12 (7): 405–460. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4.
  4. R. L. Stratonovich, Sov. Phys. JETP 4, 891 (1957).
  5. 1 2 Lee, Hai-Woong (1995). "Theory and application of the quantum phase-space distribution functions". Physics Reports. 259 (3): 147–211. Bibcode:1995PhR...259..147L. doi:10.1016/0370-1573(95)00007-4.
  6. 1 2 Moyal, J. E. (1949). "Quantum mechanics as a statistical theory". Mathematical Proceedings of the Cambridge Philosophical Society. 45 (1): 99–124. Bibcode:1949PCPS...45...99M. doi:10.1017/S0305004100000487. S2CID   124183640.
  7. P. A. M. Dirac, The Principles of Quantum Mechanics, First Edition (Oxford: Clarendon Press, 1930).
  8. 1 2 Krivoruchenko, M. I.; Faessler, A. (2007). "Weyl's symbols of Heisenberg operators of canonical coordinates and momenta as quantum characteristics". Journal of Mathematical Physics. 48 (5): 052107. arXiv: quant-ph/0604075 . Bibcode:2007JMP....48e2107K. doi:10.1063/1.2735816. S2CID   42068076.
  9. Krivoruchenko, M. I.; Fuchs, C.; Faessler, A. [in German] (2007). "Semiclassical expansion of quantum characteristics for many-body potential scattering problem". Annalen der Physik. 519 (9): 587–614. arXiv: nucl-th/0605015 . Bibcode:2007AnP...519..587K. doi:10.1002/andp.200610251.
  10. Maximov, S. (2009). "On a special picture of dynamical evolution of nonlinear quantum systems in the phase-space representation". Physica D. 238 (18): 1937–1950. Bibcode:2009PhyD..238.1937M. doi:10.1016/j.physd.2009.07.001.
  11. P. R. Holland, The Quantum Theory of Motion: An Account of the De Broglie-Bohm Causal Interpretation of Quantum Mechanics, (Cambridge University Press, 1993), ISBN   0-521-35404-8.
  12. Berezin, F. A. (1980). "Feynman path integrals in a phase space". Soviet Physics Uspekhi. 23 (11): 763–788. Bibcode:1980SvPhU..23..763B. doi:10.1070/PU1980v023n11ABEH005062.
  13. Marinov, M. S. (1991). "A new type of phase-space path integral". Physics Letters A. 153 (1): 5–11. Bibcode:1991PhLA..153....5M. doi:10.1016/0375-9601(91)90352-9.
  14. Wong, C. Y. (2003). "Explicit solution of the time evolution of the Wigner function". Journal of Optics B: Quantum and Semiclassical Optics. 5 (3): S420–S428. arXiv: quant-ph/0210112 . Bibcode:2003JOptB...5S.420W. doi:10.1088/1464-4266/5/3/381. S2CID   15478434.
  15. McQuarrie, B. R.; Osborn, T. A.; Tabisz, G. C. (1998). "Semiclassical Moyal quantum mechanics for atomic systems". Physical Review A. 58 (4): 2944–2961. Bibcode:1998PhRvA..58.2944M. doi:10.1103/physreva.58.2944.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. Braunss, G. (2013). "Quantum dynamics in phase space: Moyal trajectories 2". Journal of Mathematical Physics. 54 (1): 012105. Bibcode:2013JMP....54a2105B. doi:10.1063/1.4773229.
  17. Braunss, G. (2017). "Quantum dynamics in phase space: Moyal trajectories 3". Journal of Mathematical Physics. 58 (6): 062104. Bibcode:2017JMP....58f2104B. doi:10.1063/1.4984592.

Textbooks