Methyl isonicotinate

Last updated
Methyl isonicotinate
Methyl isonicotinate.svg
Names
Preferred IUPAC name
Methyl pyridine-4-carboxylate
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.017.770 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 219-546-8
PubChem CID
UNII
  • Key: OLXYLDUSSBULGU-UHFFFAOYSA-N
  • InChI=1S/C7H7NO2/c1-10-7(9)6-2-4-8-5-3-6/h2-5H,1H3
  • COC(=O)C1=CC=NC=C1
Properties
C7H7NO2
Molar mass 137.4 g/mol
Appearanceorange/brown
Melting point 16.1°C
Boiling point 208.0 °C
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Methyl isonicotinate is a toxic compound, which is used as a semiochemical. Other names for this compound are 4-pyridine carboxylic acid, and isonicotinic acid methyl ester. [1] [2] [3] This compound is slightly toxic to the human body. It has an irritating effect on the eyes, skin, and respiratory tract. [4] Moreover, the compound is used as the active ingredient in several sticky thrip traps to monitor and catch thrips in greenhouses. [5]

Contents

History

Methyl isonicotinate, a patented 4-pyridyl carbonyl compound, was found to be a useful semiochemical that does not use any type of pheromone. No specific history was found on the compound, other than that research has been performed to investigate how this chemical can be used for the management of thrip-pests. [5]

Structure and reactivity

Methyl isonicotinate is a 4-pyridyl carbonyl compound consisting of a pyridine ring attached to methyl carboxylate. [5] No data were available for the reactivity of methyl isonicotinate.

Synthesis

In order to synthesize methyl isonicotinate several substances need to react with one another. These compounds are isonicotinic acid, methanol, sulfuric acid, and sodium carbonate. [6]

Available forms

Methyl isonicotinate (C7H7NO2) has many constitutional isomers. Examples are methyl nicotinate, 2-nitrotoluene, and salicylamide. [7] All have the same molecular formula, but differ in connectivity between the atoms and are therefore different molecules with specific properties.

Mechanism of action

No information on the mechanism of action was found during the data-search. The only effect of this compound which is found is that it influences the movement of thrips, as mentioned later. Moreover, the compound is used on industrial sites as a laboratory chemical, where it aids in the synthesis of other substances. [3]

Efficacy and side effects

Efficacy

Sticky blue and yellow thrip traps are used to monitor pests on crops. Methyl isonicotinate is the active ingredient in for example LUREM-TR (Koppers biological systems) and is used to detect a pest in an early stage. [5] The addition of methyl isonicotinate to thrip control methods can increase the success of the trap. [8] The compound affects the movement of thrips as walking and take-off behavior increases. More movement leads to more captured thrips on sticky traps. Usage of methyl isonicotinate in traps can increase the catches up to 20 times depending on the species and the conditions. [5] In addition, the increased movement of thrips increases the exposure of the species to insecticides or biopesticides.

There are 10 thrip species known to react to methyl isonicotinate:

Thrips species [5]
Frankliniella occidentalis (Western flower thrips)
Frankliniella schultzei (common blossom thrips)
Hydatothrips adolfifriderici
Megalurothrips sjostedti (bean flower thrips)
Thrips coloratus (loquat thrips)
Thrips imaginis (plague thrips)
Thrips major (rose thrips)
Thrips obscuratus (NZ flower thrips)
Thrips tabaci (onion thrips)
Thrips palmi (melon thrips)

Adverse effects

Methyl isonicotinate is known for causing skin corrosion. In low concentration, this compound leads to irritation of the skin. An acute symptom is redness of the skin, but the effects of the substance can be delayed. [4] If the skin has been in contact with the substance, the skin should be flushed with running water for at least 20 minutes and the person should see a doctor. In addition, it causes significant damage to the eye. When the eye has been contaminated with this compound, flush the eyes with running water for a minimum of 15 minutes straight away. During this process, the eyelids should be open. After, it is advised that the person should call an emergency medical center. [4] Also, the respiratory tract may be affected when the system comes in contact with large amounts of methyl isonicotinate. Medical attention is needed. After overexposure one might experience nausea, a headache, dizziness, tiredness, or even vomiting. [9] Lastly, methyl isonicotinate is a combustible liquid. [4]

Toxicity

There are different studies performed on the acute toxicity of methyl isonicotinate. The acute toxicity relates to effects that occur after exposure to a substance or mixture. [10] In the studies on acute toxicity of methyl isonicotinate, the effects were observed in vivo in rodents. [3]

Oral toxicity studies in rats

To examine the oral toxicity of methyl isonicotinate, studies were performed to estimate the LD50. Based on the studies supported by Tsarichenko (1977), U.S. Library of Medicine (2017) and Gestis Substance Database (2017), Sprague-Dawley male and female rats were treated with methyl isonicotinate by oral gavage route. [3] According to the estimated LD50 of 3906 mg/kg, methyl isonicotinate is classified as category V on GLP criteria for acute oral toxicity. [10] Category V substances are identified as causing relatively low acute toxicity hazard. However, the substances could present a danger to vulnerable populations. [11] In a treatment with isonicotinate acid, the rats showed clinical signs such as suppression of the general motor activity, an impairment of motor coordination and an assumption of a lateral position. These signs were all observed at a LD50 of 5000 mg/kg. [3]

Dermal toxicity in rabbits

The dermal toxicity was estimated based on a study supported by Cosmetic ingredient review (2005) on methyl isonicotinate. [3] In this study, rabbits were used to estimate the LD50 for the dermal toxicity of methyl isonicotinate. The rabbits were treated with methyl isonicotinate by dermal application. This study resulted in an estimated LD50 of 3828 mg/kg. [3] Conclusively, methyl isonicotinate can be classified as category V for acute dermal toxicity. [10]

Overview Exposure Acute Toxic Level LD50
Animal speciesSexTreatmentLD50 (mg/kg)
Sprague-Dawley ratmale/femaleOral3906
Rabbitmale/femaleDermal3828

Effects on animals

The European Chemical Agency (ECHA) mentions some effects on animals: Short term toxicity to aquatic invertebrates, aquatic algae, cyanobacteria, and micro-organisms. No other effects on animals were found during the data-search. Furthermore, as mentioned before, the compound can serve as a semiochemical in thrips, affecting their movement and therefore increasing the functionality of traps. [12]

Related Research Articles

In toxicology, the median lethal dose, LD50 (abbreviation for "lethal dose, 50%"), LC50 (lethal concentration, 50%) or LCt50 is a measure of the lethal dose of a toxin, radiation, or pathogen. The value of LD50 for a substance is the dose required to kill half the members of a tested population after a specified test duration. LD50 figures are frequently used as a general indicator of a substance's acute toxicity. A lower LD50 is indicative of increased toxicity.

Imidacloprid Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

Chlorfenvinphos Chemical compound

Chlorfenvinphos is the common name of an organophosphorus compound that was widely used as an insecticide and an acaricide. The molecule itself can be described as an enol ester derived from dichloroacetophenone and diethylphosphonic acid. Chlorfenvinphos has been included in many products since its first use in 1963. However, because of its toxic effect as a cholinesterase inhibitor it has been banned in several countries, including the United States and the European Union. Its use in the United States was cancelled in 1991.

Ethion Chemical compound

Ethion (C9H22O4P2S4) is an organophosphate insecticide. Ethion is known to affect a neural enzyme called acetylcholinesterase and prevent it from working.

Acute toxicity describes the adverse effects of a substance that result either from a single exposure or from multiple exposures in a short period of time. To be described as acute toxicity, the adverse effects should occur within 14 days of the administration of the substance.

Fipronil Chemical compound

Fipronil is a broad-spectrum insecticide that belongs to the phenylpyrazole chemical family. Fipronil disrupts the insect central nervous system by blocking the ligand-gated ion channel of the GABAA receptor and glutamate-gated chloride (GluCl) channels. This causes hyperexcitation of contaminated insects' nerves and muscles. Fipronil's specificity towards insects is believed to be due to its greater binding affinity to the GABAA receptors of insects, than to those of mammals, and to its action on GluCl channels, which do not exist in mammals. As of 2017, there did not appear to be significant resistance among fleas to fipronil.

Methylparaben Chemical compound

Methylparaben, also methyl paraben, one of the parabens, is a preservative with the chemical formula CH3(C6H4(OH)COO). It is the methyl ester of p-hydroxybenzoic acid.

Azinphos-methyl Chemical compound

Azinphos-methyl (Guthion) is a broad spectrum organophosphate insecticide manufactured by Bayer CropScience, Gowan Co., and Makhteshim Agan. Like other pesticides in this class, it owes its insecticidal properties to the fact that it is an acetylcholinesterase inhibitor. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act, and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.

Phosmet Organophosphate non-systemic insecticide

Phosmet is a phthalimide-derived, non-systemic, organophosphate insecticide used on plants and animals. It is mainly used on apple trees for control of codling moth, though it is also used on a wide range of fruit crops, ornamentals, and vines for the control of aphids, suckers, mites, and fruit flies.

Benzotrichloride Chemical compound

Benzotrichloride (BTC), also known as α,α,α-trichlorotoluene, phenyl chloroform or (trichloromethyl)benzene, is an organic compound with the formula C6H5CCl3. Benzotrichloride is an unstable, colorless (to yellowish), viscous, chlorinated hydrocarbon with a penetrating odor. Benzotrichloride is used extensively as a chemical intermediate for products of various classes, i.e. dyes and antimicrobial agents.

Sterigmatocystin Chemical compound

Sterigmatocystin is a polyketide mycotoxin produced by certain species of Aspergillus. The toxin is naturally found in some cheeses.

Spinosad Chemical compound

Spinosad is an insecticide based on chemical compounds found in the bacterial species Saccharopolyspora spinosa. The genus Saccharopolyspora was discovered in 1985 in isolates from crushed sugarcane. The bacteria produce yellowish-pink aerial hyphae, with bead-like chains of spores enclosed in a characteristic hairy sheath. This genus is defined as aerobic, Gram-positive, nonacid-fast actinomycetes with fragmenting substrate mycelium. S. spinosa was isolated from soil collected inside a nonoperational sugar mill rum still in the Virgin Islands. Spinosad is a mixture of chemical compounds in the spinosyn family that has a generalized structure consisting of a unique tetracyclic ring system attached to an amino sugar (D-forosamine) and a neutral sugar (tri-Ο-methyl-L-rhamnose). Spinosad is relatively nonpolar and not easily dissolved in water.

Methiocarb Chemical compound

Methiocarb is a carbamate pesticide which is used as a bird repellent, insecticide, acaricide and molluscicide since the 1960s. Carbamates are widely used in agriculture as insecticides and herbicides. They are preferred instead of organochlorines because organochlorines are long lasting persistent in crops. Methiocarb has contact and stomach action on mites and neurotoxic effects on molluscs. Seeds treated with methiocarb also affects birds. Other names for methiocarb are mesurol and mercaptodimethur.

Acetamiprid Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

<i>Ocimum gratissimum</i> Species of flowering plant

Ocimum gratissimum, also known as clove basil, African basil, and in Hawaii as wild basil, is a species of Ocimum. It is native to Africa, Madagascar, southern Asia, and the Bismarck Archipelago, and naturalized in Polynesia, Hawaii, Mexico, Panama, West Indies, Brazil, and Bolivia.

Carbophenothion Chemical compound

Carbophenothion also known as Stauffer R 1303 as for the manufacturer, Stauffer Chemical, is an organophosphorus chemical compound. It was used as a pesticide for citrus fruits under the name of Trithion. Carbophenothion was used as an insecticide and acaricide. Although not used anymore it is still a restricted use pesticide in the United States. The chemical is identified in the US as an extremely hazardous substance according to the Emergency Planning and Community Right-to-Know Act.

Imazaquin Chemical compound

Imazaquin is an imidazolinone herbicide, so named because it contains an imidazolinone core. This organic compound is used to control a broad spectrum of weed species. It is a colorless or white solid, although commercial samples can appear brown or tan.

EPN (insecticide) Chemical compound

EPN is an insecticide of the phosphonothioate class. It is used against pests such as European corn borer, rice stem borer, bollworm, tobacco budworm, and boll weevil.

4-Methylcyclohexanemethanol Chemical compound

4-Methylcyclohexanemethanol (MCHM, systematic name 4-methylcyclohexylmethanol) is an organic compound with the formula CH3C6H10CH2OH. Classified as a saturated higher alicyclic primary alcohol. Both cis and trans isomers exist, depending on the relative positions of the methyl (CH3) and hydroxymethyl (CH2OH) groups on the cyclohexane ring. Commercial samples of MCHM consists of a mixture of these isomers as well as other components that vary with the supplier.

Methyl fluoroacetate Chemical compound

Methyl fluoroacetate (MFA) is an extremely toxic methyl ester of fluoroacetic acid. It is a colorless, odorless liquid at room temperature. It is used as a laboratory chemical and as a rodenticide. Because of its extreme toxicity, MFA was studied for potential use as chemical weapon. The general population is not likely to be exposed to methyl fluoroacetate. People who use MFA for work, however, can breathe in or have direct skin contact with the substance.

References

  1. "Methyl isonicotinate". chemicalbook.com.
  2. "4-pyridine carboxylic acid, methyl ester". comptox.epa.gov.
  3. 1 2 3 4 5 6 7 "Methyl isonicotinate". echa.europa.eu.
  4. 1 2 3 4 "TCI America Safety Sheet" (PDF). chemblink.com.
  5. 1 2 3 4 5 6 Teulon, D.A.J.; Davidson, M.M.; Perry, N.B.; Nielsen, M-C.; Van_Tol, R.W.H.M.; Kogel, W.J. de (8 January 2011). "Recent developments with methyl isonicotinate a semiochemical used in thrips pest management". New Zealand Plant Protection. 64: 287. doi: 10.30843/nzpp.2011.64.5994 .
  6. "Synthesis of (a) methyl isonicotinate". Prepchem.com.
  7. "Methyl isonicotinate". Pubchem.ncbi.
  8. van Tol, R. W. H. M.; de Bruin, A.; Butler, R. C.; Davidson, M. M.; Teulon, D. A. J.; de Kogel, W. J. (March 2012). "Methyl isonicotinate induces increased walking and take-off behaviour in western flower thrips, Frankliniella occidentalis: Thrips walking and take-off response to a semiochemical". Entomologia Experimentalis et Applicata. 142 (3): 181–190. doi:10.1111/j.1570-7458.2011.01215.x. S2CID   86442760.
  9. "Safety Data Sheet" (PDF). chemblink.com.
  10. 1 2 3 "Guidance on the application of the CPL criteria". Echa.europa.eu.
  11. "Chapter 5: Acute Toxicity" (PDF). Retrieved 3 March 2021.
  12. Teulon, D. a. J.; Davidson, M. M.; Perry, N. B.; Nielsen, M.-C.; Castañé, C.; Bosch, D.; Riudavets, J.; Tol, R. W. H. M. van; Kogel, W. J. de (2017). "Methyl isonicotinate – a non-pheromone thrips semiochemical – and its potential for pest management". International Journal of Tropical Insect Science. 37 (2): 50–56. doi:10.1017/S1742758417000030. S2CID   91050003.