Micro-irrigation

Last updated
A farm owner inspecting an underground micro-irrigation system on a tomato farm in Woodland, California 20150415-NRCS-LSC-0182 (17116616919).jpg
A farm owner inspecting an underground micro-irrigation system on a tomato farm in Woodland, California

Micro-irrigation, also called Micro-spray,localized, low-volume, low-flow, or trickle irrigation, is an irrigation method with lower water pressure and flow than a traditional sprinkler system. Low-volume irrigation is used in agriculture for row crops, orchards, and vineyards. It is also used in horticulture in wholesale nurseries, in landscaping for civic, commercial, and private landscapes and gardens, and in the science and practice of restoration ecology and environmental remediation. The lower volume allows the water to be absorbed into slow-percolation soils such as clay, minimizing runoff.

Contents

System components

Sustainable micro-irrigation system in southern Afrin, Syria, created by the AANES (Rojava) Sustaniable Micro irrigation in Northern Syria.jpg
Sustainable micro-irrigation system in southern Afrin, Syria, created by the AANES (Rojava)

A wide variety of system components are used in micro-irrigation systems. Most include a filter, such as pre-filters, sand separators, media filters, screen filters, and disc filters. The level of filtration required depends on the size of the emission device and the quality of the water source. A Pressure regulator or regulating valve may be required to reduce the system pressure to the desired level. [1] Automatically or manually operated valves are required to switch from one irrigated section to another. An irrigation controller is used with automatic systems and may be needed for back flushing the filter or sand separator. Since water conservation is a main reason for choosing micro-irrigation systems, soil moisture sensors, rain shutoff sensors and sometimes even weather stations may be installed to further reduce consumption.

Emission devices

Microtubing

Microtubing is one of the oldest types of drip irrigation devices and was used in greenhouses in the 1970s. It consists of small diameter tubing. Flow is regulated purely by the tubing's length and diameter. Weights or stakes can be attached to the end of the tubing to keep it in place.

Flow drip emitters

Low-flow irrigation systems in gardens using drip apply water through two methods:

Low volume irrigation systems often use the two delivery components of drip systems to apply water through small holes in small diameter tubes placed on or below the surface. This is done instead of agricultural surface irrigation and furrow irrigation for vegetables, fruits and berries, and other high-value crops.

Adjustable drip emitters

Trickle emitters, also called "spider sprays," come in fixed or adjustable radius shapes and diameters, and are installed directly on the flexible supply pipe or on tubing connected to it, and mounted on small stakes. Trickle emitters work well for plants with more fibrous root systems, tree and large shrub basins, and in pots and container gardens—allowing automated watering on decks and patios. Mist emitters can be used in pot, both on the ground and hanging, with humidity-fog watering for epiphytes and ferns replicating habitats.

In the horticulture industry, wholesale growers and plant nurseries often use trickle emitters for 5-US-gallon (19 L) and larger container stock, to automate watering. Attached to longer supply tubing on short stakes, they are easily movable to new containers when stock is moved or sold. Mist emitters are used for propagation, epiphytes, and other plants needing higher humidity.

Micro-sprinklers

Low volume micro-sprinklers or high-efficiency nozzles may be attached to hard plastic risers or attached to standard sprinkler heads, but are also mounted on stakes and attached to small diameter micro-tubing connected to polyethylene tubing with a barbed connector. Some micro-sprinklers have a fixed spray or stream pattern, while others rotate. These are installed above ground and are often used for fruit and nut orchards and vineyards. These systems are expensive, even for large-scale agricultural use, and are predominantly reserved for high-value crops.

Macro-drip irrigation

High-volume, low-pressure irrigation systems for container gardening are known as Macro-Drip. A pressure regulator lowers the water pressure to under 200 kPa (30 psi) while a relatively large diameter hose or pipe delivers the water directly to a sprinkler head. [2] This allows a larger volume of water to reach the flowerpot in a short amount of time, which will then be absorbed into the roots of the plant.

Sprinkler

Sprinkler irrigation [3] sprays water onto the land. Sprinklers spread water in an equal balance. It decreases labor costs and saves up to 20%–40% in water supply. It can be applied to any soil that helps to increase crop production. A wide variety of sprinklers available in the market; one can choose carefully from the best of sprinkler systems.[ citation needed ]

Ecological restoration and phytoremediation projects

Low-flow irrigation systems are used on native plant habitat restoration and environmental remediation projects. The lower operating pressure can be the only choice for remote locations with wells or small storage tank water sources. It is used in temporary installations during initial establishment periods, and on the soil surface is easily removable with minimal damage to the recovering plant community. An example is its use in riparian zone restoration, and environmental remediation projects using phytoremediation and bioremediation techniques.

Water conservation

As municipal and agricultural water supplies become more constrained due to increasing population, droughts and climate change; city, water district, and state-province level regulations and codes are beginning to encourage or mandate reduced water consumption. Micro-irrigation is an efficient way to conserve water and reduce water consumption. According to the EPA report, a typical American home uses 30% of its water outside, and up to 50% of that water might be lost to runoff, wind or evaporation, partly due to the improper irrigation system. Micro-irrigation supplies water only where it is required and delivers water directly to the root zone of plants at a lower flow rate, allowing the water to soak into the soil rather than run off. According to research, micro-irrigation systems consume 20–50% less water than traditional spray sprinkler systems. [4]

Use of micro-irrigation systems on green building candidate projects can help them to accumulate points for LEED - (Leadership in Energy and Environmental Design) certification rating and awards.

See also

Related Research Articles

<span class="mw-page-title-main">Irrigation</span> Agricultural artificial application of water to land

Irrigation is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has been developed by many cultures around the world. Irrigation helps to grow crops, maintain landscapes, and revegetate disturbed soils in dry areas and during times of below-average rainfall. In addition to these uses, irrigation is also employed to protect crops from frost, suppress weed growth in grain fields, and prevent soil consolidation. It is also used to cool livestock, reduce dust, dispose of sewage, and support mining operations. Drainage, which involves the removal of surface and sub-surface water from a given location, is often studied in conjunction with irrigation.

<span class="mw-page-title-main">Greywater</span> Type of wastewater generated in households without toilet wastewater

Greywater refers to domestic wastewater generated in households or office buildings from streams without fecal contamination, i.e., all streams except for the wastewater from toilets. Sources of greywater include sinks, showers, baths, washing machines or dishwashers. As greywater contains fewer pathogens than blackwater, it is generally safer to handle and easier to treat and reuse onsite for toilet flushing, landscape or crop irrigation, and other non-potable uses. Greywater may still have some pathogen content from laundering soiled clothing or cleaning the anal area in the shower or bath.

<span class="mw-page-title-main">Water conservation</span> Policies for sustainable development of water use

Water conservation includes all the policies, strategies and activities to sustainably manage the natural resource of fresh water, to protect the hydrosphere, and to meet the current and future human demand. Population, household size and growth and affluence all affect how much water is used. Factors such as climate change have increased pressures on natural water resources especially in manufacturing and agricultural irrigation. Many countries have already implemented policies aimed at water conservation, with much success. The key activities to conserve water are as follows: any beneficial reduction in water loss, use and waste of resources, avoiding any damage to water quality; and improving water management practices that reduce the use or enhance the beneficial use of water. Technology solutions exist for households, commercial and agricultural applications. Water conservation programs involved in social solutions are typically initiated at the local level, by either municipal water utilities or regional governments.

Drip irrigation or trickle irrigation is a type of micro-irrigation system that has the potential to save water and nutrients by allowing water to drip slowly to the roots of plants, either from above the soil surface or buried below the surface. The goal is to place water directly into the root zone and minimize evaporation. Drip irrigation systems distribute water through a network of valves, pipes, tubing, and emitters. Depending on how well designed, installed, maintained, and operated it is, a drip irrigation system can be more efficient than other types of irrigation systems, such as surface irrigation or sprinkler irrigation.

An irrigation controller is a device to operate automatic irrigation systems such as lawn sprinklers and drip irrigation systems. Most controllers have a means of setting the frequency of irrigation, the start time, and the duration of watering. Some controllers have additional features such as multiple programs to allow different watering frequencies for different types of plants, rain delay settings, input terminals for sensors such as rain and freeze sensors, soil moisture sensors, weather data, remote operation, etc.

<span class="mw-page-title-main">Irrigation sprinkler</span> Method of irrigating lawns and crops

An irrigation sprinkler is a device used to irrigate (water) agricultural crops, lawns, landscapes, golf courses, and other areas. They are also used for cooling and for the control of airborne dust. Sprinkler irrigation is the method of applying water in a controlled manner in way similar to rainfall. The water is distributed through a network that may consist of pumps, valves, pipes, and sprinklers.

<span class="mw-page-title-main">Garden hose</span> Flexible tube used to convey water

A garden hose, hosepipe, or simply hose is a flexible tube used to convey water. There are a number of common attachments available for the end of the hose, such as sprayers and sprinklers. Hoses are usually attached to a hose spigot or tap.

<span class="mw-page-title-main">Pipe (fluid conveyance)</span> Tubular section or hollow cylinder

A pipe is a tubular section or hollow cylinder, usually but not necessarily of circular cross-section, used mainly to convey substances which can flow — liquids and gases (fluids), slurries, powders and masses of small solids. It can also be used for structural applications; hollow pipe is far stiffer per unit weight than solid members.

Microtubing or spaghetti tubing is a very fine plastic tubing used in drip irrigation, typically in gardens and greenhouses, with a small inside diameter which may be 0.05" or smaller.

Distribution uniformity or DU in irrigation is a measure of how uniformly water is applied to the area being watered, normally expressed as percentage, and not to be confused with efficiency. The distribution uniformity is often calculated when performing an irrigation audit. The DU should not be confused with the coefficient of uniformity (CU) which is often preferred for describing the performance of overhead pressurized systems.

<span class="mw-page-title-main">Fertigation</span> Adding fertilizers to an irrigation system

Fertigation is the injection of fertilizers, used for soil amendments, water amendments and other water-soluble products into an irrigation system.

<span class="mw-page-title-main">Flowerpot</span> Container in pottery or plastic in which flowers and plants are held

A flowerpot, planter, planterette or plant pot, is a container in which flowers and other plants are cultivated and displayed. Historically, and still to a significant extent today, they are made from plain terracotta with no ceramic glaze, with a round shape, tapering inwards. Flowerpots are now often also made from plastic, metal, wood, stone, or sometimes biodegradable material. An example of biodegradable pots are ones made of heavy brown paper, cardboard, or peat moss in which young plants for transplanting are grown.

Rivulis is a global manufacturer and provider of complete micro and drip irrigation systems and solutions for seasonal horticulture, orchards, vineyards, row crops, SDI and greenhouse, soilless, hydroponic applications. Founded in 1966 as Plastro Irrigation Systems Ltd, Rivulis is headquartered in Kibbutz Gvat, Jezreel Valley, Israel. The company represents an integration of four industry pioneers and veterans: Plastro, T-Systems, Roberts Irrigation, and Eurodrip. It has 3,300 business partners worldwide, and a wholesale retail and vast dealer network in over 120 countries. The company operates 16 factories worldwide and has 2,000 employees. Rivulis has multiple global design centers and 3 R&D centers in agricultural hotspots of Israel, California, and Greece.

<span class="mw-page-title-main">Netafim</span> Israeli irrigation equipment manufacturer

Netafim is an Israeli manufacturer of irrigation equipment. The company produces drippers, dripperlines, sprinklers and micro-emitters. Netafim also manufactures and distributes crop management technologies, including monitoring and control systems, dosing systems, and crop management software, as well as a variety of services, including managed irrigation, agronomical advisory and operation and maintenance. As of 2012, Netafim was the global leader on the fast expanding market of drip- and micro-irrigation. In it was the overall largest provider of drip irrigation systems, with a global market share of 30%.

<span class="mw-page-title-main">Rotating biological contactor</span> Biological process for wastewater treatment

A rotating biological contactor or RBC is a biological fixed-film treatment process used in the secondary treatment of wastewater following primary treatment. The primary treatment process involves removal of grit, sand and coarse suspended material through a screening process, followed by settling of suspended solids. The RBC process allows the wastewater to come in contact with a biological film in order to remove pollutants in the wastewater before discharge of the treated wastewater to the environment, usually a body of water. A rotating biological contactor is a type of secondary (biological) treatment process. It consists of a series of closely spaced, parallel discs mounted on a rotating shaft which is supported just above the surface of the wastewater. Microorganisms grow on the surface of the discs where biological degradation of the wastewater pollutants takes place.

<span class="mw-page-title-main">Spray (liquid drop)</span> Dynamic collection of drops dispersed in a gas

A spray is a dynamic collection of drops dispersed in a gas. The process of forming a spray is known as atomization. A spray nozzle is the device used to generate a spray. The two main uses of sprays are to distribute material over a cross-section and to generate liquid surface area. There are thousands of applications in which sprays allow material to be used most efficiently. The spray characteristics required must be understood in order to select the most appropriate technology, optimal device and size.

<span class="mw-page-title-main">Pulse drip irrigation</span>

Pulse drip irrigation is an experimental irrigation technique primarily used with drip irrigation. Maintaining a high level of soil moisture for germination of seed is one reason this technique may be used.

<span class="mw-page-title-main">Subsurface textile irrigation</span>

Subsurface Textile Irrigation (SSTI) is a technology designed specifically for subsurface irrigation in all soil textures from desert sands to heavy clays. The use of SSTI will significantly reduce the usage of water, fertilizer and herbicide. It will lower on-going operational costs and, if maintained properly, will last for decades. By delivering water and nutrients directly to the root zone, plants are healthier and have a far greater yield.

<span class="mw-page-title-main">Vermifilter</span> Aerobic treatment system, consisting of a biological reactor containing media

A vermifilter is an aerobic treatment system, consisting of a biological reactor containing media that filters organic material from wastewater. The media also provides a habitat for aerobic bacteria and composting earthworms that purify the wastewater by removing pathogens and oxygen demand. The "trickling action" of the wastewater through the media dissolves oxygen into the wastewater, ensuring the treatment environment is aerobic for rapid decomposition of organic substances.

A fertilizer injector is a piece of farming equipment used by farmers to reduce labor when fertilizing a large number of crops. Though this device can be used in a variety of agricultural ways, these injectors are essential in greenhouses and nurseries. This injector is utilized every time the plants are watered, which provides consistency for necessary plant growth. This form of micro-irrigation has become more popular over the past few years, which only further contributes to how unparalleled uniformity this device provides.

References

  1. "Where to Find Your Water Pressure Regulator". The Spruce. Retrieved 2021-09-17.
  2. Garden Time TV (2019-04-26), Daisy Rain Garden System , retrieved 2019-04-29
  3. "How do Sprinkler Irrigation Systems Work? | Automat Industries". Automat Irrigation Blog. 2019-08-06. Retrieved 2019-09-18.
  4. United States Environmental Protection Agency. "Saving Water With Microirrigation: A Home Owner Guide" (PDF). epa.gov. Retrieved 29 April 2023.