Mirror mount

Last updated
Two kinematic mirror mounts, with mirrors. Mirrormount2.jpg
Two kinematic mirror mounts, with mirrors.

A mirror mount is a device that holds a mirror. [1] In optics research, these can be quite sophisticated devices, due to the need to be able to tip and tilt the mirror by controlled amounts, while still holding it in a precise position when it is not being adjusted.

Contents

An optical mirror mount generally consists of a movable front plate which holds the mirror, and a fixed back plate with adjustment screws. Adjustment screws drive the front plate about the axes of rotation in the pitch (vertical) and yaw (horizontal) directions. An optional third actuator often enables z-axis translation. [2]

Precision mirror mounts can be quite expensive, and a notable amount of engineering goes into their design. Such sophisticated mounts are often required for lasers, interferometers, and optical delay lines.

Types of mirror mount

A kinematic mount, showing some of the mechanism. Mirrormount1.jpg
A kinematic mount, showing some of the mechanism.

The most common type of mirror mount is the kinematic mount. [3] This type of mount is designed according to the principles of kinematic determinacy. Typically, the movable frame that holds the mirror pivots on a ball bearing which is set into a hole in the fixed frame. Ideally, this hole should be trihedral (pyramid-shaped). Often a conical hole is used due to easier manufacture. The frame is pivoted by means of two micrometers or fine-thread screws, tipped with steel ball bearings. One of these ball bearings rests in a V-groove, the other rests on a flat surface. On cheaper mounts, the flat surface may be simply the material of the mount. In more expensive mounts, the flat surface (and perhaps the hole and v-groove too) may be made out of a much harder material (often sapphire), set into the frame.

The reason for this strange mechanism is that the first ball (ideally) makes contact with the fixed frame at exactly three points, the second ball at two, and the third ball at just one. These six points of contact exactly constrain the six degrees of freedom for motion of the movable frame. This leads to precise movement of the frame when the micrometers or screws are turned, without unnecessary wobble or friction.

A disadvantage of kinematic mounts is that the center of the mirror moves along its normal axis, when the mirror is rotated. This is because the center of rotation is the middle of the first ball bearing, not the center of the mirror. For optical cavities and interferometers, it is often desirable to be able to align the mirrors separately from adjustments to the length of the cavity. For these applications and others, a more sophisticated mount is required.

A caricature of a gimbal mount aka cardanic mount, showing all but the threads. Mirror mount.PNG
A caricature of a gimbal mount aka cardanic mount, showing all but the threads.

One way of eliminating this translation along the axis is to set the first ball on a fine-thread screw as well. By appropriate adjustment of all three screws, the mirror can be tilted in either direction without translation. The screws can by driven by a motor under computer control to make this seem to the operator like simple rotation about a virtual pivot point in the center of the mirror surface. The translation can instead be eliminated mechanically by using a gimbal mount, which uses two rings that each pivot about a line running through the center of the mirror. This gives kinematically correct two-axis rotation about the center of the mirror.

With both types of mount, springs are needed to keep the frame pressed against the ball bearings, unless the mount is designed to be used only in an orientation where gravity will keep the frame in place. Following the cantilever principle, a large mount allows finer control than a smaller one. The frames are ideally made of a light material, to make the resonant frequency of the structure high. This reduces vibration, since many common sources of vibration are relatively low frequency. For stability, the fixed frame is supported by a rigid mount that is securely bolted to a supporting surface. In a laboratory environment, this is typically an optical table. A shock can cause the mount to move away from the ball bearings, but because there are only 6, hard contacts, the mirror will return to the original position, preserving the alignment.

The mount itself has to avoid deformation of the mounted optics. Stress from mounting can introduce aberration in the light reflected from a mirror, or photoelasticity inside a lens. In some lasers the mirrors have to be easily replaced, in which case the mount needs to be designed to allow the mirror to be removed and replaced without losing the correct alignment.

Operation

The fine-thread screws show a slip and stick behaviour; when used manually, a torque is applied with two fingers until the thread slips a bit, then the new position is read on a scale. Inexpensive screws do long slips and lack a scale. Precision micrometers perform better and provide a scale for reference. When used remotely, an electric motor is used to apply short pulses of torque. The motor is firmly connected with the screw and the thread and nothing else so that the pulse is absorbed by friction. To read out the position electronically, a rotary encoder is attached. When the ball is not completely centered on the screw and the axis is not normal to the mirror surface (which is an explicit feature of some convenience mirror mounts), a small sinus movement of the mirror is overlaid onto the linear movement, which a controller could compensate for. For analog fine control (5 nm), piezos are built into the mobile frame.

Applications

Mirror mounts holding two broadband dielectric mirrors. Two Broadband Dielectric Mirrors.jpg
Mirror mounts holding two broadband dielectric mirrors.

Laser cavity end mirrors need very precise alignment. Due to their low divergence laser beams need precise steering mirrors. For rapid prototyping on an optical table mirror mounts can be used to hold other elements besides mirrors, for example lenses often need to be aligned for minimal coma. Sometimes prisms only need two axes alignment and can be mounted on a mirror mount rather than a three-axis prism table.

Critical phase matched crystals can be aligned and tuned precisely with a standard mirror mount. The same is true for small etalons, retarders and polarizers. Furthermore, mirror mounts using magnets instead of springs allow the mobile frame to be removed and later replaced in exactly the same position.

See also

Related Research Articles

<span class="mw-page-title-main">Micrometer (device)</span> Tool for the precise measurement of a components length, width, and/or depth

A micrometer, sometimes known as a micrometer screw gauge, is a device incorporating a calibrated screw widely used for accurate measurement of components in mechanical engineering and machining as well as most mechanical trades, along with other metrological instruments such as dial, vernier, and digital calipers. Micrometers are usually, but not always, in the form of calipers. The spindle is a very accurately machined screw and the object to be measured is placed between the spindle and the anvil. The spindle is moved by turning the ratchet knob or thimble until the object to be measured is lightly touched by both the spindle and the anvil.

<span class="mw-page-title-main">Lathe</span> Machine tool which rotates the work piece on its axis

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

<span class="mw-page-title-main">Bearing (mechanical)</span> Mechanism to constrain relative movement to the desired motion and reduce friction

A bearing is a machine element that constrains relative motion to only the desired motion, and reduces friction between moving parts. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts. Most bearings facilitate the desired motion by minimizing friction. Bearings are classified broadly according to the type of operation, the motions allowed, or to the directions of the loads (forces) applied to the parts.

<span class="mw-page-title-main">Hinge</span> Mechanical bearing connecting two objects

A hinge is a mechanical bearing that connects two solid objects, typically allowing only a limited angle of rotation between them. Two objects connected by an ideal hinge rotate relative to each other about a fixed axis of rotation: all other translations or rotations being prevented, and thus a hinge has one degree of freedom. Hinges may be made of flexible material or of moving components. In biology, many joints function as hinges, like the elbow joint.

<span class="mw-page-title-main">Caster</span> Undriven wheel that is designed to be attached to the bottom of a larger object

A caster is an undriven wheel that is designed to be attached to the bottom of a larger object to enable that object to be moved.

<span class="mw-page-title-main">Flexure</span>

A flexure is a flexible element engineered to be compliant in specific degrees of freedom. Flexures are a design feature used by design engineers for providing adjustment or compliance in a design.

<span class="mw-page-title-main">Spherometer</span>

A spherometer is an instrument used for the precise measurement of the radius of curvature of a sphere or a curved surface. Originally, these instruments were primarily used by opticians to measure the curvature of the surface of a lens.

<span class="mw-page-title-main">Coordinate-measuring machine</span> Device for measuring the geometry of objects

A coordinate measuring machine (CMM) is a device that measures the geometry of physical objects by sensing discrete points on the surface of the object with a probe. Various types of probes are used in CMMs, the most common being mechanical and laser sensors, though optical and white light sensor do exist. Depending on the machine, the probe position may be manually controlled by an operator or it may be computer controlled. CMMs typically specify a probe's position in terms of its displacement from a reference position in a three-dimensional Cartesian coordinate system. In addition to moving the probe along the X, Y, and Z axes, many machines also allow the probe angle to be controlled to allow measurement of surfaces that would otherwise be unreachable.

<span class="mw-page-title-main">Meridian circle</span> Astronomical instrument for timing of the passage of stars

The meridian circle is an instrument for timing of the passage of stars across the local meridian, an event known as a culmination, while at the same time measuring their angular distance from the nadir. These are special purpose telescopes mounted so as to allow pointing only in the meridian, the great circle through the north point of the horizon, the north celestial pole, the zenith, the south point of the horizon, the south celestial pole, and the nadir. Meridian telescopes rely on the rotation of the sky to bring objects into their field of view and are mounted on a fixed, horizontal, east–west axis.

A linear-motion bearing or linear slide is a bearing designed to provide free motion in one direction. There are many different types of linear motion bearings.

<span class="mw-page-title-main">Ball joint</span> Spherical bearing most commonly used in automobile steering mechanisms

In an automobile, ball joints are spherical bearings that connect the control arms to the steering knuckles, and are used on virtually every automobile made. They bionically resemble the ball-and-socket joints found in most tetrapod animals.

<span class="mw-page-title-main">Ball screw</span> Low-friction linear actuator

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical raceway for ball bearings which act as a precision screw. As well as being able to apply or withstand high thrust loads, they can do so with minimum internal friction. They are made to close tolerances and are therefore suitable for use in situations in which high precision is necessary. The ball assembly acts as the nut while the threaded shaft is the screw. In contrast to conventional leadscrews, ballscrews tend to be rather bulky, due to the need to have a mechanism to recirculate the balls.

<span class="mw-page-title-main">Linear stage</span> A tool for precise linear motion

A linear stage or translation stage is a component of a precise motion system used to restrict an object to a single axis of motion. The term linear slide is often used interchangeably with "linear stage", though technically "linear slide" refers to a linear motion bearing, which is only a component of a linear stage. All linear stages consist of a platform and a base, joined by some form of guide or linear bearing in such a way that the platform is restricted to linear motion with respect to the base. In common usage, the term linear stage may or may not also include the mechanism by which the position of the platform is controlled relative to the base.

<span class="mw-page-title-main">Grease fitting</span>

A grease fitting, grease nipple, Zerk fitting, grease zerk, or Alemite fitting is a metal fitting used in mechanical systems to feed lubricants, usually lubricating grease, into a bearing under moderate to high pressure using a grease gun.

In manufacturing, threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

<span class="mw-page-title-main">Yaw bearing</span>

The yaw bearing is the most crucial and cost intensive component of a yaw system found on modern horizontal axis wind turbines. The yaw bearing must cope with enormous static and dynamic loads and moments during the wind turbine operation, and provide smooth rotation characteristics for the orientation of the nacelle under all weather conditions. It has also to be corrosion and wear resistant and extremely long lasting. It should last for the service life of the wind turbine) while being cost effective.

<span class="mw-page-title-main">Roller screw</span> Low-friction precision screw-type actuato

A roller screw, also known as a planetary roller screw or satellite roller screw, is a low-friction precision screw-type actuator, a mechanical device for converting rotational motion to linear motion, or vice versa. Planetary roller screws are used as the actuating mechanism in many electro-mechanical linear actuators. Due to its complexity the roller screw is a relatively expensive actuator, but may be suitable for high-precision, high-speed, heavy-load, long-life and heavy-use applications.

<span class="mw-page-title-main">Tripod head</span> Part of a tripod system

A tripod head is the part of a tripod system that attaches the supported device to the tripod legs, and allows the orientation of the device to be manipulated or locked down. Modular or stand-alone tripod heads can be used on a wide range of tripods, allowing the user to choose which type of head best suits their needs. Integrated heads are built directly onto the tripod legs, reducing the cost of the tripod system.

<span class="mw-page-title-main">Fine adjustment screw</span>

The term fine adjustment screw typically refers to screws with threads from 40 to 100 TPI and ultra fine adjustment screw has been used to refer to 100–508 TPI. Even though these are non-standard threads, both ISO metric screw thread designations and UNC designations have been used to call out thread dimensions and fit (class). A typical use for a fine adjustment screw is in an optical mirror mount as an adjuster. Typically 80 TPI screws are used in mirror mounts. Ultra fine adjuster screws are used in applications requiring extremely fine motion like laser alignment, fiber coupling.

The Leighton Radio Telescopes are 10.4 meter parabolic dish antennas designed by Robert B. Leighton in the 1970s, which were fabricated on the Caltech campus during the 1970s and 1980s. The telescope surfaces reached an accuracy of 10 microns RMS, allowing observations throughout the millimeter and submillimeter bands. In all, eight of these telescopes were made. They were used as the six elements of the Owens Valley Radio Observatory (OVRO) millimeter interferometer in California, and as single telescopes at the Caltech Submillimeter Observatory in Hawaii and the Raman Research Institute (RRI) at Bangalore, India. In the spring of 2005, the six Leighton telescopes in Owens Valley were moved to a high mountain site in the White Mountains to form the core of the CARMA array of 25 telescopes. The CARMA array was decommissioned in 2015 at which time the Leighton telescopes were moved back to OVRO, where they are now being repurposed for different projects including the CO Mapping Array Pathfinder (COMAP), the Event Horizon Telescope (EHT), and various transient detection projects.

References

  1. "Optical Mirror Mounts Infographic". Newport.com. Retrieved 18 September 2017.
  2. "Optical Mirror Mount Guide". Archived from the original on 2017-10-18.
  3. "Kinematic Mounts". Archived from the original on January 15, 2010. Retrieved February 1, 2010.