A momentum exchange tether is a kind of space tether that could theoretically be used as a launch system, or to change spacecraft orbits. Momentum exchange tethers create a controlled force on the end-masses of the system due to the pseudo-force known as centrifugal force. While the tether system rotates, the objects on either end of the tether will experience continuous acceleration; the magnitude of the acceleration depends on the length of the tether and the rotation rate. Momentum exchange occurs when an end body is released during the rotation. The transfer of momentum to the released object will cause the rotating tether to lose energy, and thus lose velocity and altitude. However, using electrodynamic tether thrusting, or ion propulsion the system can then re-boost itself with little or no expenditure of consumable reaction mass.[ citation needed ]
A non-rotating tether is a rotating tether that rotates exactly once per orbit so that it always has a vertical orientation relative to the parent body. A spacecraft arriving at the lower end of this tether, or departing from the upper end, will take momentum from the tether, while a spacecraft departing from the lower end of the tether, or arriving at the upper end, will add momentum to the tether.
In some cases momentum exchange systems are intended to run as balanced transportation schemes where an arriving spacecraft or payload is exchanged with one leaving with the same speed and mass, and then no net change in momentum or angular momentum occurs.
Gravity-gradient stabilization, also called "gravity stabilization" and "tidal stabilization", is a simple and reliable method for controlling the attitude of a satellite that requires no electronic control systems, rocket motors or propellant.
This type of attitude control tether has a small mass on one end, and a satellite on the other. Tidal forces stretch the tether between the two masses. There are two ways of explaining tidal forces. In one, the upper end mass of the system is moving faster than orbital velocity for its altitude, so centrifugal force makes it want to move further away from the planet it is orbiting. At the same time, the lower end mass of the system is moving at less than orbital speed for its altitude, so it wants to move closer to the planet. The end result is that the tether is under constant tension and wants to hang in a vertical orientation. Simple satellites have often been stabilized this way; either with tethers, or with how the mass is distributed within the satellite.
As with any freely hanging object, it can be disturbed and start to swing. Since there is no atmospheric drag in space to slow the swing, a small bottle of fluid with baffles may be mounted in the spacecraft to damp the pendulum vibrations via the viscous friction of the fluid.
In a strong planetary magnetic field such as around the Earth, a conducting tether can be configured as an electrodynamic tether. This can either be used as a dynamo to generate power for the satellite at the cost of slowing its orbital velocity, or it can be used to increase the orbital velocity of the satellite by putting power into the tether from the satellite's power system. Thus the tether can be used to either accelerate or to slow an orbiting spacecraft without using any rocket propellant. [1]
When using this technique with a rotating tether, the current through the tether must alternate in phase with the rotation rate of the tether in order to produce either a consistent slowing force or a consistent accelerating force.
Whether slowing or accelerating the satellite, the electrodynamic tether pushes against the planet's magnetic field, and thus the momentum gained or lost ultimately comes from the planet.
A sky-hook is a theoretical class of orbiting tether propulsion intended to lift payloads to high altitudes and speeds. [2] [3] [4] [5] [6] Simple sky-hooks are essentially partial elevators, extending some distance below a base-station orbit and allowing orbital insertion by lifting the cargo. Most proposals spin the tether so that its angular momentum also provides energy to the cargo, speeding it up to orbital velocity or beyond while slowing the tether. Some form of propulsion is then applied to the tether to regain the angular momentum. [7]
A Bolo, or rotating tether, is a tether that rotates more than once per orbit and whose endpoints have a significant tip speed (~ 1–3 km/s or 2,200–6,700 mph or 3,600–10,800 km/h). The maximum speed of the endpoints is limited by the strength of the cable material and the safety factor it is designed for.
The purpose of the Bolo is to either speed up, or slow down, a spacecraft that docks with it without using any of the spacecraft's on-board propellant and to change the spacecraft's orbital flight path. Effectively, the Bolo acts as a reusable upper stage for any spacecraft that docks with it.
The momentum imparted to the spacecraft by the Bolo is not free. In the same way that the Bolo changes the spacecraft's momentum and direction of travel, the Bolo's orbital momentum and rotational momentum is also changed, and this costs energy that must be replaced. The idea is that the replacement energy would come from a more efficient and lower cost source than a chemical rocket motor. Two possible lower cost sources for this replacement energy are an ion propulsion system, or an electrodynamic tether propulsion system that would be part of the Bolo. An essentially free source of replacement energy is momentum gathered from payloads to be accelerated in the other direction, suggesting that the need for adding energy from propulsion systems will be quite minimal with balanced, two-way, space commerce.[ citation needed ]
Rotovators are rotating tethers with a rotational direction such that the lower endpoint of the tether is moving slower than the orbital velocity of the tether and the upper endpoint is moving faster. [8] The word is a portmanteau derived from the words rotor and elevator .
If the tether is long enough and the rotation rate high enough, it is possible for the lower endpoint to completely cancel the orbital speed of the tether such that the lower endpoint is stationary with respect to the planetary surface that the tether is orbiting. As described by Moravec, [9] [10] this is "a satellite that rotates like a wheel". The tip of the tether moves in approximately a cycloid, in which it is momentarily stationary with respect to the ground. In this case, a payload that is "grabbed" by a capture mechanism on the rotating tether during the moment when it is stationary would be picked up and lifted into orbit; and potentially could be released at the top of the rotation, at which point it is moving with a speed significantly greater than the escape velocity and thus could be released onto an interplanetary trajectory. (As with the bolo, discussed above, the momentum and energy given to the payload must be made up, either with a high-efficiency rocket engine, or with momentum gathered from payload moving the other direction.)
On bodies with an atmosphere, such as the Earth, the tether tip must stay above the dense atmosphere. On bodies with reasonably low orbital speed (such as the Moon and possibly Mars), a rotovator in low orbit can potentially touch the ground, thereby providing cheap surface transport as well as launching materials into cislunar space. In January 2000, The Boeing Company completed a study of tether launch systems including two-stage tethers that had been commissioned by the NASA Institute for Advanced Concepts. [7]
Unfortunately an Earth-to-orbit rotovator cannot be built from currently available materials since the thickness and tether mass to handle the loads on the rotovator would be uneconomically large. A "watered down" rotovator with two-thirds the rotational speed, however, would halve the centripetal acceleration stresses.
Therefore, another trick to achieve lower stresses is that rather than picking up a cargo from the ground at zero velocity, a rotovator could pick up a moving vehicle and sling it into orbit. For example, a rotovator could pick up a Mach 12 aircraft from the upper atmosphere of the Earth and move it into orbit without using rockets, and could likewise catch such a vehicle and lower it into atmospheric flight. It is easier for a rocket to achieve the lower tip speed, so "single stage to tether" has been proposed. [11] One such is called the Hyper-sonic Airplane Space Tether Orbital Launch (HASTOL). [7] Either air breathing or rocket to tether could save a great deal of fuel per flight, and would permit for both a simpler vehicle and more cargo.
The company Tethers Unlimited, Inc. (founded by Robert Forward and Robert P. Hoyt) [12] has called this approach "Tether Launch Assist". [13] It has also been referred to as a space bolas. [14] The company's goals have drifted to deorbit assist modules and marine tethers as in 2020 though. [15] [16]
Investigation of "Tether Launch Assist" concepts in 2013 have indicated the concept may become marginally economical in near future as soon as rotovators with high enough (~10 W/kg) power-to-mass ratio are developed. [17]
A space elevator is a space tether that is attached to a planetary body. For example, on Earth, a space elevator would go from the equator to well above geosynchronous orbit.
A space elevator does not need to be powered as a rotovator does, because it gets any required angular momentum from the planetary body. The disadvantage is that it is much longer, and for many planets a space elevator cannot be constructed from known materials. A space elevator on Earth would require material strengths outside current technological limits (2014). [18] [19] [20] Martian and lunar space elevators could be built with modern-day materials however. [21] A space elevator on Phobos has also been proposed. [22]
Space elevators also have larger amounts of potential energy than a rotovator, and if heavy parts (like a "dropped wrench") should fall they would reenter at a steep angle and impact the surface at near orbital speeds. On most anticipated designs, if the cable component itself fell, it would burn up before hitting the ground.
Although it might be thought that this requires constant energy input, it can in fact be shown to be energetically favorable to lift cargo off the surface of the Moon and drop it into a lower Earth orbit, and thus it can be achieved without any significant use of propellant, since the Moon's surface is in a comparatively higher potential energy state. Also, this system could be built with a total mass of less than 28 times the mass of the payloads. [23] [24]
Rotovators can thus be charged by momentum exchange. Momentum charging uses the rotovator to move mass from a place that is "higher" in a gravity field to a place that is "lower". The technique to do this uses the Oberth effect, where releasing the payload when the tether is moving with higher linear speed, lower in a gravitational potential gives more specific energy, and ultimately more speed than the energy lost picking up the payload at a higher gravitational potential, even if the rotation rate is the same. For example, it is possible to use a system of two or three rotovators to implement trade between the Moon and Earth. The rotovators are charged by lunar mass (dirt, if exports are not available) dumped on or near the Earth, and can use the momentum so gained to boost Earth goods to the Moon. The momentum and energy exchange can be balanced with equal flows in either direction, or can increase over time.
Similar systems of rotovators could theoretically open up inexpensive transportation throughout the Solar System.
A tether cable catapult system is a system where two or more long conducting tethers are held rigidly in a straight line, attached to a heavy mass. Power is applied to the tethers and is picked up by a vehicle that has linear magnet motors on it, which it uses to push itself along the length of the cable. Near the end of the cable the vehicle releases a payload and slows and stops itself and the payload carries on at very high velocity. The calculated maximum speed for this system is extremely high, more than 30 times the speed of sound in the cable; and velocities of more than 30 km/s (67,000 mph; 110,000 km/h) seem to be possible. [25]
Interplanetary spaceflight or interplanetary travel is the crewed or uncrewed travel between stars and planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Uncrewed space probes have flown to all the observed planets in the Solar System as well as to dwarf planets Pluto and Ceres, and several asteroids. Orbiters and landers return more information than fly-by missions. Crewed flights have landed on the Moon and have been planned, from time to time, for Mars, Venus and Mercury. While many scientists appreciate the knowledge value that uncrewed flights provide, the value of crewed missions is more controversial. Science fiction writers propose a number of benefits, including the mining of asteroids, access to solar power, and room for colonization in the event of an Earth catastrophe.
Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.
A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable anchored to the surface and extending into space. An Earth-based space elevator cannot be constructed with a tall tower supported from below due to the immense weight—instead, it would consist of a cable with one end attached to the surface near the equator and the other end attached to a counterweight in space beyond geostationary orbit. The competing forces of gravity, which is stronger at the lower end, and the upward centrifugal force, which is stronger at the upper end, would result in the cable being held up, under tension, and stationary over a single position on Earth. With the tether deployed, climbers (crawlers) could repeatedly climb up and down the tether by mechanical means, releasing their cargo to and from orbit. The design would permit vehicles to travel directly between a planetary surface, such as the Earth's, and orbit, without the use of large rockets.
Solar sails are a method of spacecraft propulsion using radiation pressure exerted by sunlight on large surfaces. A number of spaceflight missions to test solar propulsion and navigation have been proposed since the 1980s. The first spacecraft to make use of the technology was IKAROS, launched in 2010.
A mass driver or electromagnetic catapult is a proposed method of non-rocket spacelaunch which would use a linear motor to accelerate and catapult payloads up to high speeds. Existing and contemplated mass drivers use coils of wire energized by electricity to make electromagnets, though a rotary mass driver has also been proposed. Sequential firing of a row of electromagnets accelerates the payload along a path. After leaving the path, the payload continues to move due to momentum.
Beam-powered propulsion, also known as directed energy propulsion, is a class of aircraft or spacecraft propulsion that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a microwave or a laser beam and it is either pulsed or continuous. A continuous beam lends itself to thermal rockets, photonic thrusters and light sails, whereas a pulsed beam lends itself to ablative thrusters and pulse detonation engines.
Propulsion is the generation of force by any combination of pushing or pulling to modify the translational motion of an object, which is typically a rigid body but may also concern a fluid. The term is derived from two Latin words: pro, meaning before or forward; and pellere, meaning to drive. A propulsion system consists of a source of mechanical power, and a propulsor.
A skyhook is a proposed momentum exchange tether that aims to reduce the cost of placing payloads into low Earth orbit. A heavy orbiting station is connected to a cable which extends down towards the upper atmosphere. Payloads, which are much lighter than the station, are hooked to the end of the cable as it passes, and are then flung into orbit by rotation of the cable around the center of mass. The station can then be reboosted to its original altitude by electromagnetic propulsion, rocket propulsion, or by deorbiting another object with the same kinetic energy as transferred to the payload.
An orbital spaceflight is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit. To do this around the Earth, it must be on a free trajectory which has an altitude at perigee around 80 kilometers (50 mi); this is the boundary of space as defined by NASA, the US Air Force and the FAA. To remain in orbit at this altitude requires an orbital speed of ~7.8 km/s. Orbital speed is slower for higher orbits, but attaining them requires greater delta-v. The Fédération Aéronautique Internationale has established the Kármán line at an altitude of 100 km (62 mi) as a working definition for the boundary between aeronautics and astronautics. This is used because at an altitude of about 100 km (62 mi), as Theodore von Kármán calculated, a vehicle would have to travel faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself.
A lunar space elevator or lunar spacelift is a proposed transportation system for moving a mechanical climbing vehicle up and down a ribbon-shaped tethered cable that is set between the surface of the Moon "at the bottom" and a docking port suspended tens of thousands of kilometers above in space at the top.
In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission. As input to the Tsiolkovsky rocket equation, it determines how much propellant is required for a vehicle of given empty mass and propulsion system.
In spaceflight, an orbital maneuver is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth an orbital maneuver is called a deep-space maneuver (DSM).
A launch loop, or Lofstrom loop, is a proposed system for launching objects into orbit using a moving cable-like system situated inside a sheath attached to the Earth at two ends and suspended above the atmosphere in the middle. The design concept was published by Keith Lofstrom and describes an active structure maglev cable transport system that would be around 2,000 km (1,240 mi) long and maintained at an altitude of up to 80 km (50 mi). A launch loop would be held up at this altitude by the momentum of a belt that circulates around the structure. This circulation, in effect, transfers the weight of the structure onto a pair of magnetic bearings, one at each end, which support it.
In aerospace engineering, spin stabilization is a method of stabilizing a satellite or launch vehicle by means of spin, i.e. rotation along the longitudinal axis. The concept originates from conservation of angular momentum as applied to ballistics, where the spin is commonly obtained by means of rifling. For most satellite applications this approach has been superseded by three-axis stabilization.
Orbit insertion is the spaceflight operation of adjusting a spacecraft’s momentum, in particular to allow for entry into a stable orbit around a planet, moon, or other celestial body. This maneuver involves either deceleration from a speed in excess of the respective body’s escape velocity, or acceleration to it from a lower speed.
Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.
Non-rocket spacelaunch refers to theoretical concepts for launch into space where much of the speed and altitude needed to achieve orbit is provided by a propulsion technique that is not subject to the limits of the rocket equation. Although all space launches to date have been rockets, a number of alternatives to rockets have been proposed. In some systems, such as a combination launch system, skyhook, rocket sled launch, rockoon, or air launch, a portion of the total delta-v may be provided, either directly or indirectly, by using rocket propulsion.
Spacecraft attitude control is the process of controlling the orientation of a spacecraft with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.
Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines.
This glossary of aerospace engineering terms pertains specifically to aerospace engineering, its sub-disciplines, and related fields including aviation and aeronautics. For a broad overview of engineering, see glossary of engineering.