Skyhook (structure)

Last updated
How a rotating and non-rotating skyhook would appear in orbit Skyhooks.gif
How a rotating and non-rotating skyhook would appear in orbit

A skyhook is a proposed momentum exchange tether that aims to reduce the cost of placing payloads into low Earth orbit. A heavy orbiting station is connected to a cable which extends down towards the upper atmosphere. Payloads, which are much lighter than the station, are hooked to the end of the cable as it passes, and are then flung into orbit by rotation of the cable around the center of mass. The station can then be reboosted to its original altitude by electromagnetic propulsion, rocket propulsion, or by deorbiting another object with the same kinetic energy as transferred to the payload.

Contents

A skyhook differs from a geostationary orbit space elevator in that a skyhook would be much shorter and would not come in contact with the surface of the Earth. A skyhook would require a suborbital launch vehicle to reach its lower end, while a space elevator would not.

History

Different synchronous non-rotating orbiting skyhook concepts and versions have been proposed, starting with Isaacs in 1966, [1] [2] Artsutanov in 1967, [3] [4] Pearson [5] and Colombo in 1975, [6] Kalaghan in 1978, [7] and Braginski in 1985. [8] The versions with the best potential involve a much shorter tether in low Earth orbit, which rotates in its orbital plane and whose ends brush the upper Earth atmosphere, with the rotational motion cancelling the orbital motion at ground level. These "rotating" skyhook versions were proposed by Moravec in 1976, [9] [10] and Sarmont in 1994. [11] [12]

This resulted in a Shuttle-based tether system: the TSS-1R mission, launched 22 February 1996 on STS-75 that focused in characterizing basic space tether behavior and space plasma physics. [13] The Italian satellite was deployed to a distance of 19.7 km (12.2 mi) from the Space Shuttle. [13]

An engineer speculated in 1994 that the skyhook could be cost competitive with what is realistically thought to be achievable using a space elevator. [11]

In 2000 and 2001, Boeing Phantom Works, with a grant from NASA Institute for Advanced Concepts, performed a detailed study of the engineering and commercial feasibility of various skyhook designs. They studied in detail a specific variant of this concept, called "Hypersonic Airplane Space Tether Orbital Launch System" or HASTOL. This design called for a hypersonic ramjet or scramjet aircraft to intercept a rotating hook while flying at Mach 10. [14]

While no skyhook has yet been built, there have been a number[ quantify ] of flight experiments exploring various aspects of the space tether concept in general. [15]

Rotating skyhook

The rotating concept. If the orbital velocity and the tether rotation rate are synchronized, the tether tip moves in a cycloid curve. At the lowest point it is momentarily stationary with respect to the ground, where it can 'hook' a payload and swing it into orbit. Cycloid f.gif
The rotating concept. If the orbital velocity and the tether rotation rate are synchronized, the tether tip moves in a cycloid curve. At the lowest point it is momentarily stationary with respect to the ground, where it can 'hook' a payload and swing it into orbit.

By rotating the tether around the orbiting center of mass in a direction opposite to the orbital motion, the speed of the hook relative to the ground can be reduced. This reduces the required strength of the tether, and makes coupling easier.

The rotation of the tether can be made to exactly match the orbital speed (around 7–8 km/s). In this configuration, the hook would trace out a path similar to a cardioid. From the point of view of the ground, the hook would appear to descend almost vertically, come to a halt, and then ascend again. This configuration minimises aerodynamic drag, and thus allows the hook to descend deep into the atmosphere. [1] [15] However, according to the HASTOL study, a skyhook of this kind in Earth orbit would require a very large counterweight, on the order of 1000–2000 times the mass of the payload, and the tether would need to be mechanically reeled in after collecting each payload in order to maintain synchronization between the tether rotation and its orbit. [14]

Phase I of Boeing's Hypersonic Airplane Space Tether Orbital Launch (HASTOL) study, published in 2000, proposed a 600 km-long tether, in an equatorial orbit at 610–700 km altitude, rotating with a tip speed of 3.5 km/s. This would give the tip a ground speed of 3.6 km/s (Mach 10), which would be matched by a hypersonic airplane carrying the payload module, with transfer at an altitude of 100 km. The tether would be made of existing commercially available materials: mostly Spectra 2000 (a kind of ultra-high-molecular-weight polyethylene), except for the outer 20 km which would be made of heat-resistant Zylon PBO. With a nominal payload mass of 14 tonnes, the Spectra/Zylon tether would weigh 1300 tonnes, or 90 times the mass of the payload. The authors stated:

The primary message we want to leave with the Reader is: "We don't need magic materials like 'Buckminster-Fuller-carbon-nanotubes' to make the space tether facility for a HASTOL system. Existing materials will do." [14]

The second phase of the HASTOL study, published in 2001, proposed increasing the intercept airspeed to Mach 15–17, and increasing the intercept altitude to 150 km, which would reduce the necessary tether mass by a factor of three. The higher speed would be achieved by using a reusable rocket stage instead of a purely air-breathing aircraft. The study concluded that although there are no "fundamental technical show-stoppers", substantial improvement in technology would be needed. In particular, there was concern that a bare Spectra 2000 tether would be rapidly eroded by atomic oxygen; this component was given a technology readiness level of 2. [16]

Similar concepts

The capture-ejector rim is a variation that consists of a rim- or ring-shaped structure. Like a rotating skyhook, it would rotate in a direction opposite to its orbital motion, allowing a spacecraft at suborbital velocity to attach to its lower portion and later be flung into orbit from its upper portion. It would be easier for a spacecraft to attach to the lower portion of a capture-ejector rim than to attach to the end of a skyhook (which would only point downwards for a brief period of time). [17]

See also

Related Research Articles

<span class="mw-page-title-main">Interplanetary spaceflight</span> Crewed or uncrewed travel between stars or planets

Interplanetary spaceflight or interplanetary travel is the crewed or uncrewed travel between stars and planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Uncrewed space probes have flown to all the observed planets in the Solar System as well as to dwarf planets Pluto and Ceres, and several asteroids. Orbiters and landers return more information than fly-by missions. Crewed flights have landed on the Moon and have been planned, from time to time, for Mars, Venus and Mercury. While many scientists appreciate the knowledge value that uncrewed flights provide, the value of crewed missions is more controversial. Science fiction writers propose a number of benefits, including the mining of asteroids, access to solar power, and room for colonization in the event of an Earth catastrophe.

<span class="mw-page-title-main">Space elevator</span> Proposed type of space transportation system

A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable anchored to the surface and extending into space. An Earth-based space elevator cannot be constructed with a tall tower supported from below due to its immense weight—instead, it would consist of a cable with one end attached to the surface near the equator and the other end attached to a counterweight in space beyond geostationary orbit. The competing forces of gravity, which is stronger at the lower end, and the upward centrifugal force, which is stronger at the upper end, would result in the cable being held up, under tension, and stationary over a single position on Earth. With the tether deployed, climbers (crawlers) could repeatedly climb up and down the tether by mechanical means, releasing their cargo to and from orbit. The design would permit vehicles to travel directly between a planetary surface, such as the Earth's, and orbit, without the use of large rockets.

<span class="mw-page-title-main">Single-stage-to-orbit</span> Launch system that only uses one rocket stage

A single-stage-to-orbit (SSTO) vehicle reaches orbit from the surface of a body using only propellants and fluids and without expending tanks, engines, or other major hardware. The term usually, but not exclusively, refers to reusable vehicles. To date, no Earth-launched SSTO launch vehicles have ever been flown; orbital launches from Earth have been performed by either fully or partially expendable multi-stage rockets.

<span class="mw-page-title-main">Scramjet</span> Jet engine where combustion takes place in supersonic airflow

A scramjet is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion, but where as a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone. This allows the scramjet to operate efficiently at extremely high speeds.

<span class="mw-page-title-main">Sub-orbital spaceflight</span> Spaceflight where the spacecraft does not go into orbit

A sub-orbital spaceflight is a spaceflight in which the spacecraft reaches outer space, but its trajectory intersects the surface of the gravitating body from which it was launched. Hence, it will not complete one orbital revolution, will not become an artificial satellite nor will it reach escape velocity.

<span class="mw-page-title-main">Orbital spaceflight</span> Spaceflight where spacecraft orbits an astronomical body

An orbital spaceflight is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit. To do this around the Earth, it must be on a free trajectory which has an altitude at perigee around 80 kilometers (50 mi); this is the boundary of space as defined by NASA, the US Air Force and the FAA. To remain in orbit at this altitude requires an orbital speed of ~7.8 km/s. Orbital speed is slower for higher orbits, but attaining them requires greater delta-v. The Fédération Aéronautique Internationale has established the Kármán line at an altitude of 100 km (62 mi) as a working definition for the boundary between aeronautics and astronautics. This is used because at an altitude of about 100 km (62 mi), as Theodore von Kármán calculated, a vehicle would have to travel faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself.

<span class="mw-page-title-main">Lunar space elevator</span> Proposed transportation system

A lunar space elevator or lunar spacelift is a proposed transportation system for moving a mechanical climbing vehicle up and down a ribbon-shaped tethered cable that is set between the surface of the Moon "at the bottom" and a docking port suspended tens of thousands of kilometers above in space at the top.

Yuri Nikolaevich Artsutanov was a Russian engineer born in Leningrad. He was one of the pioneers of the idea of a space elevator.

<span class="mw-page-title-main">Space gun</span> Method of launching an object into outer space via a large gun or cannon

A space gun, sometimes called a Verne gun because of its appearance in From the Earth to the Moon by Jules Verne, is a method of launching an object into space using a large gun- or cannon-like structure. Space guns could thus potentially provide a method of non-rocket spacelaunch. It has been conjectured that space guns could place satellites into Earth's orbit, and could also launch spacecraft beyond Earth's gravitational pull and into other parts of the Solar System by exceeding Earth's escape velocity of about 11.20 km/s. However, these speeds are too far into the hypersonic range for most practical propulsion systems and also would cause most objects to burn up due to aerodynamic heating or be torn apart by aerodynamic drag. Therefore, a more likely future use of space guns would be to launch objects into Low Earth orbit, at which point attached rockets could be fired or the objects could be "collected" by maneuverable orbiting satellites.

A momentum exchange tether is a kind of space tether that could theoretically be used as a launch system, or to change spacecraft orbits. Momentum exchange tethers create a controlled force on the end-masses of the system due to the pseudo-force known as centrifugal force. While the tether system rotates, the objects on either end of the tether will experience continuous acceleration; the magnitude of the acceleration depends on the length of the tether and the rotation rate. Momentum exchange occurs when an end body is released during the rotation. The transfer of momentum to the released object will cause the rotating tether to lose energy, and thus lose velocity and altitude. However, using electrodynamic tether thrusting, or ion propulsion the system can then re-boost itself with little or no expenditure of consumable reaction mass.

<span class="mw-page-title-main">Launch loop</span> Proposed system for launching objects into orbit

A launch loop, or Lofstrom loop, is a proposed system for launching objects into orbit using a moving cable-like system situated inside a sheath attached to the Earth at two ends and suspended above the atmosphere in the middle. The design concept was published by Keith Lofstrom and describes an active structure maglev cable transport system that would be around 2,000 km (1,240 mi) long and maintained at an altitude of up to 80 km (50 mi). A launch loop would be held up at this altitude by the momentum of a belt that circulates around the structure. This circulation, in effect, transfers the weight of the structure onto a pair of magnetic bearings, one at each end, which support it.

<span class="mw-page-title-main">Orbital ring</span> Conceptual artificial ring around the Earth

An orbital ring is a concept of an artificial ring placed around a body and set rotating at such a rate that the apparent centrifugal force is large enough to counteract the force of gravity. For the Earth, the required speed is on the order of 10 km/sec, compared to a typical low Earth orbit velocity of 8 km/sec. The structure is intended to be used as a space station or as a planetary vehicle for very high-speed transportation or space launch.

This is an alphabetical list of articles pertaining specifically to aerospace engineering. For a broad overview of engineering, see List of engineering topics. For biographies, see List of engineers.

<span class="mw-page-title-main">Non-rocket spacelaunch</span> Concepts for launch into space

Non-rocket spacelaunch refers to theoretical concepts for launch into space where much of the speed and altitude needed to achieve orbit is provided by a propulsion technique that is not subject to the limits of the rocket equation. Although all space launches to date have been rockets, a number of alternatives to rockets have been proposed. In some systems, such as a combination launch system, skyhook, rocket sled launch, rockoon, or air launch, a portion of the total delta-v may be provided, either directly or indirectly, by using rocket propulsion.

<span class="mw-page-title-main">Rocket sled launch</span> Proposed method for launching space vehicles

A rocket sled launch, also known as ground-based launch assist, catapult launch assist, and sky-ramp launch, is a proposed method for launching space vehicles. With this concept the launch vehicle is supported by an eastward pointing rail or maglev track that goes up the side of a mountain while an externally applied force is used to accelerate the launch vehicle to a given velocity. Using an externally applied force for the initial acceleration reduces the propellant the launch vehicle needs to carry to reach orbit. This allows the launch vehicle to carry a larger payload and reduces the cost of getting to orbit. When the amount of velocity added to the launch vehicle by the ground accelerator becomes great enough, single-stage-to-orbit flight with a reusable launch vehicle becomes possible.

<span class="mw-page-title-main">Space tether</span> Type of tether

Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines.

The Boeing Small Launch Vehicle, or SLV, is an air-launched three-stage-to-orbit launch vehicle concept aimed to launch small payloads of 100 pounds (45 kg) into low Earth orbit. The program is proposed to drive down launch costs for small satellites as low as US$300,000 per launch ($7,000/kg) and could be fielded by 2020.

The DARPA XS-1 was an experimental spaceplane/booster with the planned capability to deliver small satellites into orbit for the U.S. Military. It was reported to be designed to be reusable as frequently as once a day, with a stated goal of doing so for 10 days straight. The XS-1 was intended to directly replace the first stage of a multistage rocket by taking off vertically and flying to hypersonic speed and high suborbital altitude, enabling one or more expendable upper stages to separate and deploy a payload into low Earth orbit. The XS-1 would then return to Earth, where it could ostensibly be serviced fast enough to repeat the process at least once every 24 hours.

Hypothetical technology is technology that does not exist yet, but that could exist in the future. This article presents examples of technologies that have been hypothesized or proposed, but that have not been developed yet. An example of hypothetical technology is teleportation.

<span class="mw-page-title-main">Saenger (spacecraft)</span> German cancelled spaceplane project

Saenger or Sänger was a West German concept design for a two-stage-to-orbit spaceplane. It is named after Eugen Sänger, who had been a key figure in the development of the concept for aerospace company Junkers.

References

  1. 1 2 Isaacs, J. D.; Vine, A. C.; Bradner, H; Bachus, G. E. (1966). "Satellite elongation into a true "sky-hook"". Science. 151 (3711): 682–3. Bibcode:1966Sci...151..682I. doi:10.1126/science.151.3711.682. PMID   17813792. S2CID   32226322.
  2. See also: letter in Science 152:800, May 6, 1966.
  3. Artsutanov, Y. V Kosmos na Elektrovoze (Into Space by Funicular Railway). Komsomolskaya Pravda (Young Communist Pravda), July 31, 1960. Contents described in Lvov, Science 158:946, November 17, 1967.
  4. Arsutanov, Y. V Kosmos Bez Raket (Into Space Without Rockets). Znanije-Sile (Knowledge is Power) 1969(7):25, July, 1969.
  5. Pearson, J (1975). "The Orbital Tower: A Spacecraft Launcher Using the Earth's Rotational Energy". Acta Astronautica. 2 (9–10): 785–799. Bibcode:1975AcAau...2..785P. CiteSeerX   10.1.1.530.3120 . doi:10.1016/0094-5765(75)90021-1.
  6. Colombo, G., Gaposchkin, E. M., Grossi, M. D., and Weiffenbach, G. C., "The 'Skyhook': A Shuttle-Borne Tool for Low Orbital Altitude Research," Meccanica, Vol. 10, No. 1, Mar. 1975.
  7. Kalaghan, P., Arnold, D. A., Colombo, G., Grossi, M., Kirschner, L. R., and Orringer, O., "Study of the Dynamics of a Tethered Satellite System (Skyhook)," NASA Contract NAS8-32199, SAO Final Report, Mar. 1978.
  8. V.B. Braginski and K.S. Thorne, "Skyhook Gravitational Wave Detector," Moscow State University, Moscow, USSR, and Caltech, 1985.
  9. Moravec, Hans (1976). "Skyhook proposal".
  10. Moravec, H. P. (1977). "A Non-Synchronous Orbital Skyhook". Journal of the Astronautical Sciences. 25: 307–322. Bibcode:1977JAnSc..25..307M. Presented at 23rd AIAA Meeting, The Industrialization of Space, San Francisco, CA,. October 18–20, 1977.
  11. 1 2 Sarmont, Eagle (1994). "How an Earth Orbiting Tether Makes Possible an Affordable Earth-Moon Space Transportation System". SAE Technical Paper Series. Vol. 942120. doi:10.4271/942120.
  12. Moravec, Hans (1981). "Skyhook proposal".
  13. 1 2 Cosmo, M.; Lorenzini, E. (December 1997). Tethers in Space Handbook (PDF) (Third ed.). Smithsonian Astrophysical Observatory. Archived from the original (PDF) on 2007-10-06. Retrieved 2014-04-18.
  14. 1 2 3 Bogar, Thomas J.; Bangham, Michal E.; Forward, Robert L.; Lewis, Mark J. (7 January 2000). Hypersonic Airplane Space Tether Orbital Launch System, Research Grant No. 07600-018, Phase I Final Report (PDF). NASA Institute for Advanced Concepts. Retrieved 2019-07-07.
  15. 1 2 Chen, Yi; Huang, Rui; Ren, Xianlin; He, Liping; He, Ye (2013). "History of the Tether Concept and Tether Missions: A Review". ISRN Astronomy and Astrophysics. 2013 (502973): 502973. Bibcode:2013ISRAA2013E...2C. doi: 10.1155/2013/502973 .
  16. "Hypersonic Airplane Space Tether Orbital Launch (HASTOL) Architecture Study. Phase II: Final Report" (PDF). Retrieved 2015-10-18.
  17. Macconochie, I. O.; Eldred, C. H.; Martin, J. A. (1983-10-01). "Capture-ejector satellites". NASA Technical Memorandum 85686