Laser propulsion is a form of beam-powered propulsion where the energy source is a remote (usually ground-based) laser system and separate from the reaction mass. This form of propulsion differs from a conventional chemical rocket where both energy and reaction mass come from the solid or liquid propellants carried on board the vehicle.
There are two main approaches: off-board, where the laser source is external to the spacecraft, and onboard, where the laser is part of the spacecraft's propulsion system. Off-board laser propulsion, which includes laser-powered launches and laser light sails, eliminates the need for the spacecraft to carry its own energy source. [1] Onboard laser propulsion involves using lasers in nuclear fusion or ionizing interstellar gas for propulsion. [1]
The basic concepts underlying a photon-propelled "sail" propulsion system were developed by Eugene Sanger and the Hungarian physicist György Marx. Propulsion concepts using laser-energized rockets were developed in the 1970s by Arthur Kantrowitz [2] and Wolfgang Moekel, [3] with a variant using laser ablation pioneered by Leik Myrabo. [4] An exposition of Kantrowitz's laser propulsion ideas was published in 1988. [5] [6]
Laser propulsion systems may transfer momentum to a spacecraft in two different ways. The first way uses photon radiation pressure to drive momentum transfer and is the principle behind solar sails and laser sails. The second method uses the laser to help expel mass from the spacecraft as in a conventional rocket. Thus, the first uses the laser for both energy and reaction mass, while the second uses the laser for energy, but carries reaction mass. Thus, the second is fundamentally limited in final spacecraft velocities by the rocket equation.
A laser-pushed lightsail is a thin reflective sail similar to a solar sail, in which the sail is being pushed by a laser, rather than the sun. The advantage of lightsail propulsion is that the vehicle does not carry either the energy source or the reaction mass for propulsion, and hence the limitations of the Tsiolkovsky rocket equation to achieving high velocities are avoided. Use of a laser-pushed lightsail was proposed initially by Marx in 1966, [7] as a method of interstellar travel that would avoid extremely high mass ratios by not carrying fuel, and analyzed in detail by physicist Robert L. Forward in 1989. [8] Further analysis of the concept was done by Landis, [9] [10] Mallove and Matloff, [11] Andrews [12] and others.
A large diameter beam is required so that only a small portion misses the sail due to diffraction, and the spacecraft must have strong pointing stability capabilities so it can tilt its sails fast enough to follow the center of the beam. These requirements increase in importance as mission complexity increases, such as when moving from interplanetary to interstellar missions, and when moving from flyby missions to one-way landing missions and then to return missions.
The laser may alternatively consist of a large phased array of small devices that receive their energy directly from solar radiation.
The laser-pushed sail is proposed as a method of propelling a small interstellar probe by the Breakthrough Starshot project.
Another method of moving a much larger spacecraft to high velocities is by using a laser system to propel a stream of much smaller sails. Each alternative mini sail is slowed down by a laser from the home system so that they collide at ionising velocities. The ionising collisions could then be used to interact with a powerful magnetic field on the spacecraft to provide a force to power and move it.
An extension of the idea is to utilize nuclear materials on the mini sails. These materials would undergo fission or fusion, greatly increasing the magnitude of the imparted force. However, this approach would require much higher collision velocities compared to non-nuclear implementations.
Metzgar and Landis proposed a variant on the laser-pushed sail, in which the photons reflected from the sail are re-used by re-reflecting them back to the sail by a stationary mirror; a "multi-bounce laser-based sail." [13] This amplifies the force produced by recycling the photons, resulting in considerably higher force produced from the same laser power. There is also a multi-bounce photonic sail configuration which uses a large Fresnel lens around a laser generating system. In this configuration the laser shines light on a probe sail accelerating it outwards which is then reflected back through the Fresnel lens to be reflected off a larger more massive reflector probe going in the other direction. The laser light is reflected back and forth many times improving the force transmitted but importantly allows the large lens to remain in a more stable position as it is not greatly influenced by the laser lights momentum.
An optical cavity allows greater re-use of photons, but keeping the beam in the cavity becomes much more challenging. An optical cavity can be made with two high-reflectance mirrors, forming a Fabry–Pérot optical resonance cavity in which any small movement of mirrors would destroy the resonance condition and null photonic thrust. Such optical cavities are used for gravitational wave detection as in LIGO, for their extreme sensitivity to the movement of mirror. Bae originally proposed [14] to use photon recycling for use in a nanometer accuracy formation flight of satellites for this reason. Bae, however, discovered [15] that in an active optical cavity formed by two high-reflectance mirrors and a laser gain medium in between, similar to the typical laser cavity, photon recycling becomes less sensitive to the movement of mirrors. Bae named the laser thruster based on the photon recycling in an active optical cavity Photonic Laser Thruster (PLT). [16] In 2015 his team demonstrated the number of photon recycling up to 1,540 over a distance of a few meters and photonic thrusts up to 3.5 mN with the use of a 500 W laser system. In a laboratory demonstration, [17] a Cubesat (0.75 kg in weight) was propelled with PLT. [18]
There are several forms of laser propulsion in which the laser is used as an energy source to provide momentum to propellant that is carried on board the rocket. The use of a laser as the energy source means that the energy provided to the propellant is not limited by the chemical energy of the propellant.
The laser thermal rocket (heat exchanger (HX) thruster) is a thermal rocket in which the propellant is heated by energy provided by an external laser beam. [19] [20] The beam heats a solid heat exchanger, which in turn heats an inert liquid propellant, converting it to hot gas which is exhausted through a conventional nozzle. This is similar in principle to nuclear thermal and solar thermal propulsion. Using a large flat heat exchanger allows the laser beam to shine directly on the heat exchanger without focusing optics on the vehicle. The HX thruster has the advantage of working equally well with any laser wavelength and both CW and pulsed lasers, and of having an efficiency approaching 100%. The HX thruster is limited by the heat exchanger material and by radiative losses to relatively low gas temperatures, typically 1000–2000 °C. For a given temperature, the specific impulse is maximized with the minimum molecular weight reaction mass, and with hydrogen propellant, that provides sufficient specific impulse as high as 600–800 seconds, high enough in principle to allow single stage vehicles to reach low Earth orbit. The HX laser thruster concept was developed by Jordin Kare in 1991; [21] a similar microwave thermal propulsion concept was developed independently by Kevin L. Parkin at Caltech in 2001.
A variation on this concept was proposed by Prof. John Sinko and Dr. Clifford Schlecht as a redundant safety concept for assets on orbit. [22] Packets of enclosed propellants are attached to the outside of a space suit, and exhaust channels run from each packet to the far side of the astronaut or tool. A laser beam from a space station or shuttle vaporizes the propellant inside the packs. Exhaust is directed behind the astronaut or tool, pulling the target towards the laser source. To brake the approach, a second wavelength is used to ablate the exterior of the propellant packets on the near side.
In 2022 a paper was published by researchers from McGill University proposing a laser thermal propulsion system to be used to send a spacecraft to Mars in 45 days. [23] One of the main advantages of using the proposed laser thermal propulsion system for sending spacecraft to Mars is reducing astronaut exposure to cosmic rays by reducing the transit time outside of Earth's Magnetosphere. [24]
This section needs additional citations for verification .(March 2023) |
In this design a lens and/or parabolic mirror focuses laser light into a small hole in a mirror that leads into a tube which is highly reflective inside and completely open at the other end.[ citation needed ] A phased-array laser is pulsed from Earth at the spacecraft where the laser light is focused into the tube to a waiting mobile mirror disc which will be the reaction mass. The pulse of laser light becomes trapped in the tube, bouncing back and forth and accelerating the mirror disc out at very high velocity. The mirrors are moved into position inside the tube from magazines on the side of the craft after the laser pulse has switched off. Accelerations of millions of g's are possible for these small highly reflective mirrors, and velocities over short distances can reach into the tens of kilometers per second, allowing specific impulses in the thousands.[ citation needed ] For example if a mirror disc is accelerated over 10 m at 2 million g it will reach a velocity of 20 km/s at the exit, this is over four times higher than the exhaust velocity of a hydrogen/oxygen rocket motor which is around 4.5 km/s. A comparison of specific impulses between the space shuttle's hydrogen/oxygen engines which has a specific impulse of 453 and the above cited example yields a specific impulse of 2034 for the mirror rocket which is a significant improvement.[ citation needed ] Clever control of the discs would allow much longer acceleration periods as well and therefore higher exit velocities. Jordin Kare calculated that these mirrored discs could theoretically be pushed to around 32 million g but would be at the limit of any material's strength and subject to total failure. [25] The propulsion design can be used on spacecraft going out directly from Earth's orbit or coming towards the Earth as in a returning elliptical orbit.
Ablative laser propulsion (ALP) is a form of beam-powered propulsion in which an external pulsed laser is used to burn off a plasma plume from a solid metal propellant, thus producing thrust. [26] The measured specific impulse of small ALP setups is very high at about 5000 s (49 kN·s/kg), and unlike the lightcraft developed by Leik Myrabo which uses air as the propellant, ALP can be used in space.
Material is directly removed from a solid or liquid surface at high velocities by laser ablation by a pulsed laser. Depending on the laser flux and pulse duration, the material can be simply heated and evaporated, or converted to plasma. Ablative propulsion will work in air or vacuum. Specific impulse values from 200 seconds to several thousand seconds are possible by choosing the propellant and laser pulse characteristics. Variations of ablative propulsion include double-pulse propulsion in which one laser pulse ablates material and a second laser pulse further heats the ablated gas, laser micropropulsion in which a small laser on board a spacecraft ablates very small amounts of propellant for attitude control or maneuvering, and space debris removal, in which the laser ablates material from debris particles in low Earth orbit, changing their orbits and causing them to reenter.
University of Alabama Huntsville Propulsion Research Center has researched ALP. [27] [28]
A high energy pulse focused in a gas or on a solid surface surrounded by gas produces breakdown of the gas (usually air). This causes an expanding shock wave which absorbs laser energy at the shock front (a laser sustained detonation wave or LSD wave); expansion of the hot plasma behind the shock front during and after the pulse transmits momentum to the craft. [29] [30] Pulsed plasma propulsion using air as the working fluid is the simplest form of air-breathing laser propulsion. [31] [32] The record-breaking lightcraft, developed by Leik Myrabo of RPI (Rensselaer Polytechnic Institute) and Frank Mead, works on this principle. [33] [34] [35]
Another concept of pulsed plasma propulsion is being investigated by Prof. Hideyuki Horisawa. [36]
A continuous laser beam focused in a flowing stream of gas creates a stable laser sustained plasma which heats the gas; the hot gas is then expanded through a conventional nozzle to produce thrust. Because the plasma does not touch the walls of the engine, very high gas temperatures are possible, as in gas core nuclear thermal propulsion. However, to achieve high specific impulse, the propellant must have low molecular weight; hydrogen is usually assumed for actual use, at specific impulses around 1,000 seconds. CW plasma propulsion has the disadvantage that the laser beam must be precisely focused into the absorption chamber, either through a window or by using a specially-shaped nozzle. CW plasma thruster experiments were performed in the 1970s and 1980s, primarily by Dr. Dennis Keefer of UTSI and Prof. Herman Krier of the University of Illinois at Urbana–Champaign.
This proposal would require two spacecraft: one that travels and another in Earth orbit to propel the former. The second spacecraft would fire thousands of metal pellets at the first. It would either shoot a laser at the first spacecraft or align a laser from the Earth at the first spacecraft. The laser would ablate some material from each pellet, propelling them at high speeds (>120 km/s) to provide thrust to the spacecraft. This method could allow a spacecraft to reach the outer planets in less than a year, 100 AU from the Sun in 3 years and the solar gravitational lens in 15 years. It would also be able to propel heavier spacecraft than other propulsion concepts (~1 ton in mass). [37] [38]
A general class of propulsion techniques in which the laser beam power is converted to electricity, which then powers some type of electric propulsion thruster.
A small quadcopter has flown for 12 hours and 26 minutes charged by a 2.25 kW laser (powered at less than half of its normal operating current), using 170 watt photovoltaic arrays as the power receiver, [39] and a laser has been demonstrated to charge the batteries of an unmanned aerial vehicle in flight for 48 hours. [40]
For spacecraft, laser electric propulsion is considered as a competitor to solar electric or nuclear electric propulsion for low-thrust propulsion in space. However, Leik Myrabo has proposed high-thrust laser electric propulsion, using magnetohydrodynamics to convert laser energy to electricity and to electrically accelerate air around a vehicle for thrust.
Interstellar travel is the hypothetical travel of spacecraft between star systems. Due to the vast distances between the Solar System and nearby stars, interstellar travel is not practicable with current propulsion technologies.
Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.
An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. An ion thruster creates a cloud of positive ions from a neutral gas by ionizing it to extract some electrons from its atoms. The ions are then accelerated using electricity to create thrust. Ion thrusters are categorized as either electrostatic or electromagnetic.
A magnetoplasmadynamic (MPD) thruster (MPDT) is a form of electrically powered spacecraft propulsion which uses the Lorentz force to generate thrust. It is sometimes referred to as Lorentz Force Accelerator (LFA) or MPD arcjet.
A pulsed plasma thruster (PPT), also known as a Pulsed Plasma Rocket (PPR), or as a plasma jet engine (PJE), is a form of electric spacecraft propulsion. PPTs are generally considered the simplest form of electric spacecraft propulsion and were the first form of electric propulsion to be flown in space, having flown on two Soviet probes starting in 1964. PPTs are generally flown on spacecraft with a surplus of electricity from abundantly available solar energy.
Beam-powered propulsion, also known as directed energy propulsion, is a class of aircraft or spacecraft propulsion that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a microwave or a laser beam, and it is either pulsed or continuous. A continuous beam lends itself to thermal rockets, photonic thrusters, and light sails. In contrast, a pulsed beam lends itself to ablative thrusters and pulse detonation engines.
In a traditional nuclear photonic rocket, an onboard nuclear reactor would generate such high temperatures that the blackbody radiation from the reactor would provide significant thrust. The disadvantage is that it takes much power to generate a small amount of thrust this way, so acceleration is very low. The photon radiators would most likely be constructed using graphite or tungsten. Photonic rockets are technologically feasible, but rather impractical with current technology based on an onboard nuclear power source.
An antimatter rocket is a proposed class of rockets that use antimatter as their power source. There are several designs that attempt to accomplish this goal. The advantage to this class of rocket is that a large fraction of the rest mass of a matter/antimatter mixture may be converted to energy, allowing antimatter rockets to have a far higher energy density and specific impulse than any other proposed class of rocket.
A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.
The Lightcraft is a space- or air-vehicle driven by beam-powered propulsion, the energy source powering the craft being external. It was conceptualized by aerospace engineering professor Leik Myrabo at Rensselaer Polytechnic Institute in 1976, who developed the concept further with working prototypes, funded in the 1980s by the Strategic Defense Initiative organization, and the decade after by the Advanced Concept Division of the US Air Force AFRL, NASA's MFSC and the Lawrence Livermore National Laboratory.
A solar thermal rocket is a theoretical spacecraft propulsion system that would make use of solar power to directly heat reaction mass, and therefore would not require an electrical generator, like most other forms of solar-powered propulsion do. The rocket would only have to carry the means of capturing solar energy, such as concentrators and mirrors. The heated propellant would be fed through a conventional rocket nozzle to produce thrust. Its engine thrust would be directly related to the surface area of the solar collector and to the local intensity of the solar radiation.
Solar electric propulsion (SEP) refers to the combination of solar cells and electric thrusters to propel a spacecraft through outer space. This technology has been exploited in a variety of spacecraft designs by the European Space Agency (ESA), the JAXA, Indian Space Research Organisation (ISRO) and NASA. SEP has a significantly higher specific impulse than chemical rocket propulsion, thus requiring less propellant mass to be launched with a spacecraft. The technology has been evaluated for missions to Mars.
This is an alphabetical list of articles pertaining specifically to aerospace engineering. For a broad overview of engineering, see List of engineering topics. For biographies, see List of engineers.
A plasma propulsion engine is a type of electric propulsion that generates thrust from a quasi-neutral plasma. This is in contrast with ion thruster engines, which generate thrust through extracting an ion current from the plasma source, which is then accelerated to high velocities using grids/anodes. These exist in many forms. However, in the scientific literature, the term "plasma thruster" sometimes encompasses thrusters usually designated as "ion engines".
Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generating thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.
A thermal rocket is a rocket engine that uses a propellant that is externally heated before being passed through a nozzle to produce thrust, as opposed to being internally heated by a redox (combustion) reaction as in a chemical rocket.
A photon rocket is a rocket that uses thrust from the momentum of emitted photons for its propulsion. Photon rockets have been discussed as a propulsion system that could make interstellar flight possible during a human lifetime, which requires the ability to propel spacecraft to speeds at least 10% of the speed of light, v ≈ 0.1c = 30,000 km/s. Photon propulsion has been considered to be one of the best available interstellar propulsion concepts, because it is founded on established physics and technologies. Traditional photon rockets are proposed to be powered by onboard generators, as in the nuclear photonic rocket. The standard textbook case of such a rocket is the ideal case where all of the fuel is converted to photons which are radiated in the same direction. In more realistic treatments, one takes into account that the beam of photons is not perfectly collimated, that not all of the fuel is converted to photons, and so on. A large amount of fuel would be required and the rocket would be a huge vessel.
Breakthrough Starshot is a research and engineering project by the Breakthrough Initiatives to develop a proof-of-concept fleet of light sail interstellar probes named Starchip, to be capable of making the journey to the Alpha Centauri star system 4.34 light-years away. It was founded in 2016 by Yuri Milner, Stephen Hawking, and Mark Zuckerberg.
Microwave electrothermal thruster, also known as MET, is a propulsion device that converts microwave energy into thermal energy. These thrusters are predominantly used in spacecraft propulsion, more specifically to adjust the spacecraft’s position and orbit. A MET sustains and ignites a plasma in a propellant gas. This creates a heated propellant gas which in turn changes into thrust due to the expansion of the gas going through the nozzle. A MET’s heating feature is like one of an arc-jet ; however, due to the free-floating plasma, there are no problems with the erosion of metal electrodes, and therefore the MET is more efficient.
{{cite journal}}
: Cite journal requires |journal=
(help)