Multiomics

Last updated
Number of citations of the terms "Multiomics" and "Multi-omics" in PubMed until the 31st December 2021. Multiomics PubMed 2022.png
Number of citations of the terms "Multiomics" and "Multi-omics" in PubMed until the 31st December 2021.

Multiomics, multi-omics, integrative omics, "panomics" or "pan-omics" is a biological analysis approach in which the data consists of multiple "omes", such as the genome, epigenome, transcriptome, proteome, metabolome, exposome, and microbiome (i.e., a meta-genome and/or meta-transcriptome, depending upon how it is sequenced); [1] [2] [3] in other words, the use of multiple omics technologies to study life in a concerted way. By combining these "omes", scientists can analyze complex biological big data to find novel associations between biological entities, pinpoint relevant biomarkers and build elaborate markers of disease and physiology. In doing so, multiomics integrates diverse omics data to find a coherently matching geno-pheno-envirotype relationship or association. [4] The OmicTools service lists more than 99 pieces of software related to multiomic data analysis, as well as more than 99 databases on the topic.

Contents

Systems biology approaches are often based upon the use of multiomic analysis data. [5] [6] The American Society of Clinical Oncology (ASCO) defines panomics as referring to "the interaction of all biological functions within a cell and with other body functions, combining data collected by targeted tests ... and global assays (such as genome sequencing) with other patient-specific information." [7]

Combined multiomic data collection

Combined multiomic data collection approaches have evolved to address the limitations of traditional multiomics research, which typically requires separate sample processing for different molecular classes then subsequent computational integration, introducing variability and increasing costs. Early advances in this field include sequential extraction, [8] TRIzol-based sequential isolation methods, which demonstrated that a reagent traditionally used for RNA isolation could simultaneously extract DNA, RNA, proteins, metabolites, and lipids from a single sample. Similar approaches like the Metabolite, Protein, and Lipid extraction (MPLEx) [9] and the "Three-in-One" [10] method adapted biphasic fractionation to extract proteins, metabolites, and lipids for LC-MS/MS analysis. More recent technological developments include the Multi-Omic Single-Shot Technology (MOST), [11] which integrates proteome and lipidome analysis in a single LC-MS run using one reverse-phase column and a binary mobile phase system, and the Bead-enabled Accelerated Monophasic Multi-omics (BAMM) [12] method that combines n-butanol-based monophasic extraction with magnetic beads and accelerated protein digestion for the separate analysis of metabolites, lipids, and proteins. One of the most comprehensive technologies in this space is Dalton Bioanalytics Inc.'s Omni-MS®, a multiomic assay that uses its proprietary method to simultaneously profile proteins, lipids, electrolytes, metabolites, and other small molecules in a single preparation and single LC-MS analysis. This platform has been applied to biomarker discovery, identifying potential biomarkers across multiple molecular classes and across various conditions and diseases [13] [14] including COVID severity during pregnancy, [15] 22q11.2 deletion syndrome, [16] and hereditary angioedema. [17] These integrated approaches significantly reduce sample requirements, processing time, and technical variation while improving correlation analysis across different molecular classes, making them increasingly valuable for precision medicine and systems biology research.

Single-cell multiomics

A branch of the field of multiomics is the analysis of multilevel single-cell data, called single-cell multiomics. [18] [19] This approach gives us an unprecedented resolution to look at multilevel transitions in health and disease at the single cell level. An advantage in relation to bulk analysis is to mitigate confounding factors derived from cell to cell variation, allowing the uncovering of heterogeneous tissue architectures. [18]

Methods for parallel single-cell genomic and transcriptomic analysis can be based on simultaneous amplification [20] or physical separation of RNA and genomic DNA. [21] They allow insights that cannot be gathered solely from transcriptomic analysis, as RNA data do not contain non-coding genomic regions and information regarding copy-number variation, for example. An extension of this methodology is the integration of single-cell transcriptomes to single-cell methylomes, combining single-cell bisulfite sequencing [22] [23] to single cell RNA-Seq. [24] Other techniques to query the epigenome, as single-cell ATAC-Seq [25] and single-cell Hi-C [26] also exist.

A different, but related, challenge is the integration of proteomic and transcriptomic data. [27] [28] One approach to perform such measurement is to physically separate single-cell lysates in two, processing half for RNA, and half for proteins. [27] The protein content of lysates can be measured by proximity extension assays (PEA), for example, which use DNA-barcoded antibodies. [29] A different approach uses a combination of heavy-metal RNA probes and protein antibodies to adapt mass cytometry for multiomic analysis. [28]

Related to Single-cell multiomics is the field of Spatial Omics which assays tissues through omics readouts that preserve the relative spatial orientation of the cells in the tissue. The number of Spatial Omics methods published still lags behind the number of methods published for Single-Cell multiomics, but the numbers are catching up (Single-cell and Spatial methods).

Multiomics and machine learning

In parallel to the advances in high-throughput biology, machine learning applications to biomedical data analysis are flourishing. The integration of multi-omics data analysis and machine learning has led to the discovery of new biomarkers. [30] [31] [32] For example, one of the methods of the mixOmics project implements a method based on sparse Partial Least Squares regression for selection of features (putative biomarkers). [33] A unified and flexible statistical framewok for heterogeneous data integration called "Regularized Generalized Canonical Correlation Analysis" (RGCCA [34] [35] [36] [37] ) enables identifying such putative biomarkers. This framework is implemented and made freely available within the RGCCA R package .

Multiomics in health and disease

Overview of phases 1 and 2 of the human microbiome project. The first and second phases of the NIH Human Microbiome Project.png
Overview of phases 1 and 2 of the human microbiome project.

Multiomics currently holds a promise to fill gaps in the understanding of human health and disease, and many researchers are working on ways to generate and analyze disease-related data. [38] The applications range from understanding host-pathogen interactions and infectious diseases, [39] [40] cancer, [41] to understanding better chronic and complex non-communicable diseases [42] and improving personalized medicine. [43]

Integrated Human Microbiome Project

The second phase of the $170 million Human Microbiome Project was focused on integrating patient data to different omic datasets, considering host genetics, clinical information and microbiome composition. [44] [45] The phase one focused on characterization of communities in different body sites. Phase 2 focused in the integration of multiomic data from host & microbiome to human diseases. Specifically, the project used multiomics to improve the understanding of the interplay of gut and nasal microbiomes with type 2 diabetes, [46] gut microbiomes and inflammatory bowel disease [47] and vaginal microbiomes and pre-term birth. [48]

Systems Immunology

The complexity of interactions in the human immune system has prompted the generation of a wealth of immunology-related multi-scale omic data. [49] Multi-omic data analysis has been employed to gather novel insights about the immune response to infectious diseases, such as pediatric chikungunya, [50] as well as noncommunicable autoimmune diseases. [51] Integrative omics has also been employed strongly to understand effectiveness and side effects of vaccines, a field called systems vaccinology. [52] For example, multiomics was essential to uncover the association of changes in plasma metabolites and immune system transcriptome on response to vaccination against herpes zoster. [53]

List of software used for multi-omic analysis

The Bioconductor project curates a variety of R packages aimed at integrating omic data:

The RGCCA package implements a versatile framework for data integration. This package is freely available on the Comprehensive R Archive Network (CRAN).

The OmicTools [59] database further highlights R packages and othertools for multi omic data analysis:

Multiomic Databases

A major limitation of classical omic studies is the isolation of only one level of biological complexity. For example, transcriptomic studies may provide information at the transcript level, but many different entities contribute to the biological state of the sample (genomic variants, post-translational modifications, metabolic products, interacting organisms, among others). With the advent of high-throughput biology, it is becoming increasingly affordable to make multiple measurements, allowing transdomain (e.g. RNA and protein levels) correlations and inferences. These correlations aid the construction or more complete biological networks, filling gaps in our knowledge.

Integration of data, however, is not an easy task. To facilitate the process, groups have curated database and pipelines to systematically explore multiomic data:

See also

References

  1. Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Giampieri, Enrico; Sala, Claudia; Castellani, Gastone; Milanesi, Luciano (1 January 2016). "Methods for the integration of multi-omics data: mathematical aspects". BMC Bioinformatics. 17 (2): S15. doi: 10.1186/s12859-015-0857-9 . ISSN   1471-2105. PMC   4959355 . PMID   26821531.
  2. Bock, Christoph; Farlik, Matthias; Sheffield, Nathan C. (August 2016). "Multi-Omics of Single Cells: Strategies and Applications". Trends in Biotechnology. 34 (8): 605–608. doi:10.1016/j.tibtech.2016.04.004. PMC   4959511 . PMID   27212022.
  3. Vilanova, Cristina; Porcar, Manuel (26 July 2016). "Are multi-omics enough?". Nature Microbiology. 1 (8): 16101. doi:10.1038/nmicrobiol.2016.101. PMID   27573112. S2CID   3835720.
  4. Tarazona, S., Balzano-Nogueira, L., & Conesa, A. (2018). Multiomics Data Integration in Time Series Experiments. doi : 10.1016/bs.coac.2018.06.005
  5. PSB'14 Cancer Panomics Session Archived 2013-09-23 at the Wayback Machine
  6. The Molecular Landscape of Cancer: Using Panomics to Drive Change Archived 2013-11-09 at the Wayback Machine
  7. "Glossary". Accelerating Progress Against Cancer: ASCO's blueprint for transforming clinical and translational cancer research (PDF). American Society of Clinical Oncology. 2011. p. 28. Retrieved 13 September 2013.
  8. Shibko, S.; Koivistoinen, P.; Tratnyek, C. A.; Newhall, A. R.; Friedman, L. (June 1967). "A method for sequential quantitative separation and determination of protein, RNA, DNA, lipid, and glycogen from a single rat liver homogenate or from a subcellular fraction". Analytical Biochemistry. 19 (3): 514–528. doi:10.1016/0003-2697(67)90242-4. ISSN   0003-2697. PMID   4292701.
  9. Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.; Burnum-Johnson, Kristin E.; Kim, Young-Mo; Kyle, Jennifer E.; Matzke, Melissa M.; Shukla, Anil K.; Chu, Rosalie K.; Schepmoes, Athena A.; Jacobs, Jon M.; Baric, Ralph S.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Metz, Thomas O. (2016). "MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses". mSystems. 1 (3): e00043–16. doi:10.1128/mSystems.00043-16. ISSN   2379-5077. PMC   5069757 . PMID   27822525.
  10. Kang, Jianing; David, Lisa; Li, Yangyang; Cang, Jing; Chen, Sixue (2021). "Three-in-One Simultaneous Extraction of Proteins, Metabolites and Lipids for Multi-Omics". Frontiers in Genetics. 12: 635971. doi: 10.3389/fgene.2021.635971 . ISSN   1664-8021. PMC   8082496 . PMID   33936167.
  11. He, Yuchen; Rashan, Edrees H.; Linke, Vanessa; Shishkova, Evgenia; Hebert, Alexander S.; Jochem, Adam; Westphall, Michael S.; Pagliarini, David J.; Overmyer, Katherine A.; Coon, Joshua J. (2021-03-09). "Multi-Omic Single-Shot Technology for Integrated Proteome and Lipidome Analysis". Analytical Chemistry. 93 (9): 4217–4222. doi:10.1021/acs.analchem.0c04764. ISSN   1520-6882. PMC   8028036 . PMID   33617230.
  12. Muehlbauer, Laura K.; Jen, Annie; Zhu, Yunyun; He, Yuchen; Shishkova, Evgenia; Overmyer, Katherine A.; Coon, Joshua J. (2023-01-17). "Rapid Multi-Omics Sample Preparation for Mass Spectrometry". Analytical Chemistry. 95 (2): 659–667. doi:10.1021/acs.analchem.2c02042. ISSN   1520-6882. PMC   10026941 . PMID   36594155.
  13. Wagle, Basanta R.; Quach, Austin; Yeo, Seungjun; Assumpcao, Anna L. F. V.; Arsi, Komala; Donoghue, Annie M.; Jesudhasan, Palmy R. R. (2023-02-05). "A Multiomic Analysis of Chicken Serum Revealed the Modulation of Host Factors Due to Campylobacter jejuni Colonization and In-Water Supplementation of Eugenol Nanoemulsion". Animals. 13 (4): 559. doi: 10.3390/ani13040559 . ISSN   2076-2615. PMC   9951679 . PMID   36830346.
  14. Choi, Janghan; Shakeri, Majid; Bowker, Brian; Zhuang, Hong; Kong, Byungwhi (2025-04-14). "Differentially abundant proteins, metabolites, and lipid molecules in spaghetti meat compared to normal chicken breast meat: Multiomics analysis1". Poultry Science. 104 (7): 105165. doi: 10.1016/j.psj.2025.105165 . ISSN   0032-5791. PMID   40286572.
  15. Altendahl, Marie; Mok, Thalia; Jang, Christine; Yeo, Seungjun; Quach, Austin; Afshar, Yalda (2022). "Severe COVID-19 in pregnancy has a distinct serum profile, including greater complement activation and dysregulation of serum lipids". PLOS ONE. 17 (11): e0276766. Bibcode:2022PLoSO..1776766A. doi: 10.1371/journal.pone.0276766 . ISSN   1932-6203. PMC   9668183 . PMID   36383608.
  16. Zafarullah, Marwa; Angkustsiri, Kathleen; Quach, Austin; Yeo, Seungjun; Durbin-Johnson, Blythe P.; Bowling, Heather; Tassone, Flora (2024-02-28). "Untargeted metabolomic, and proteomic analysis identifies metabolic biomarkers and pathway alterations in individuals with 22q11.2 deletion syndrome". Metabolomics. 20 (2): 31. doi:10.1007/s11306-024-02088-0. ISSN   1573-3890. PMC   10901937 . PMID   38418685.
  17. Mahajan, Supriya D.; Aalinkeel, Ravikumar; Reynolds, Jessica L.; Machhar, Janvhi S.; Ghebrehiwet, Berhane; Schwartz, Stanley A. (February 2025). "Omics analysis reveals galectin-3 to be a potential key regulator of allergic inflammation in hereditary angioedema". The Journal of Allergy and Clinical Immunology. Global. 4 (1): 100353. doi:10.1016/j.jacig.2024.100353. ISSN   2772-8293. PMC   11583700 . PMID   39583036.
  18. 1 2 MacAulay, Iain C.; Ponting, Chris P.; Voet, Thierry (2017). "Single-Cell Multiomics: Multiple Measurements from Single Cells". Trends in Genetics. 33 (2): 155–168. doi:10.1016/j.tig.2016.12.003. PMC   5303816 . PMID   28089370.
  19. Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying (2018-04-20). "Single Cell Multi-Omics Technology: Methodology and Application". Frontiers in Cell and Developmental Biology. 6: 28. doi: 10.3389/fcell.2018.00028 . ISSN   2296-634X. PMC   5919954 . PMID   29732369.
  20. Kester, Lennart Spanjaard, Bastiaan Bienko, Magda van Oudenaarden, Alexander Dey, Siddharth S (2015). "Integrated genome and transcriptome sequencing of the same cell". Nature Biotechnology. 33 (3): 285–289. doi:10.1038/nbt.3129. OCLC   931063996. PMC   4374170 . PMID   25599178.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry (2016-09-29). "Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq". Nature Protocols. 11 (11): 2081–2103. doi:10.1038/nprot.2016.138. hdl: 20.500.11820/015ce29d-7e2d-42c8-82fa-cb1290b761c0 . ISSN   1754-2189. PMID   27685099. S2CID   24351548.
  22. Tang, Fuchou; Wen, Lu; Li, Xianlong; Wu, Xinglong; Zhu, Ping; Guo, Hongshan (2013-12-01). "Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing". Genome Research. 23 (12): 2126–2135. doi:10.1101/gr.161679.113. ISSN   1088-9051. PMC   3847781 . PMID   24179143.
  23. Kelsey, Gavin; Reik, Wolf; Stegle, Oliver; Andrews, Simon R.; Julian Peat; Saadeh, Heba; Krueger, Felix; Angermueller, Christof; Lee, Heather J. (August 2014). "Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity". Nature Methods. 11 (8): 817–820. doi:10.1038/nmeth.3035. ISSN   1548-7105. PMC   4117646 . PMID   25042786.
  24. Angermueller, Christof; Clark, Stephen J; Lee, Heather J; Macaulay, Iain C; Teng, Mabel J; Hu, Tim Xiaoming; Krueger, Felix; Smallwood, Sébastien A; Ponting, Chris P (2016-01-11). "Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity". Nature Methods. 13 (3): 229–232. doi:10.1038/nmeth.3728. ISSN   1548-7091. PMC   4770512 . PMID   26752769.
  25. Greenleaf, William J.; Chang, Howard Y.; Snyder, Michael P.; Michael L. Gonzales; Ruff, Dave; Litzenburger, Ulrike M.; Wu, Beijing; Buenrostro, Jason D. (July 2015). "Single-cell chromatin accessibility reveals principles of regulatory variation". Nature. 523 (7561): 486–490. Bibcode:2015Natur.523..486B. doi:10.1038/nature14590. ISSN   1476-4687. PMC   4685948 . PMID   26083756.
  26. Fraser, Peter; Tanay, Amos; Laue, Ernest D.; Dean, Wendy; Yaffe, Eitan; Schoenfelder, Stefan; Stevens, Tim J.; Lubling, Yaniv; Nagano, Takashi (October 2013). "Single-cell Hi-C reveals cell-to-cell variability in chromosome structure". Nature. 502 (7469): 59–64. Bibcode:2013Natur.502...59N. doi:10.1038/nature12593. ISSN   1476-4687. PMC   3869051 . PMID   24067610.
  27. 1 2 Darmanis, Spyros; Gallant, Caroline Julie; Marinescu, Voichita Dana; Niklasson, Mia; Segerman, Anna; Flamourakis, Georgios; Fredriksson, Simon; Assarsson, Erika; Lundberg, Martin (2016-01-12). "Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells". Cell Reports. 14 (2): 380–389. doi:10.1016/j.celrep.2015.12.021. ISSN   2211-1247. PMC   4713867 . PMID   26748716.
  28. 1 2 Gherardini, Pier Federico; Nolan, Garry P.; Chen, Shih-Yu; Hsieh, Elena W. Y.; Zunder, Eli R.; Bava, Felice-Alessio; Frei, Andreas P. (March 2016). "Highly multiplexed simultaneous detection of RNAs and proteins in single cells". Nature Methods. 13 (3): 269–275. doi:10.1038/nmeth.3742. ISSN   1548-7105. PMC   4767631 . PMID   26808670.
  29. Assarsson, Erika; Lundberg, Martin; Holmquist, Göran; Björkesten, Johan; Bucht Thorsen, Stine; Ekman, Daniel; Eriksson, Anna; Rennel Dickens, Emma; Ohlsson, Sandra (2014-04-22). "Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability". PLOS ONE. 9 (4): e95192. Bibcode:2014PLoSO...995192A. doi: 10.1371/journal.pone.0095192 . ISSN   1932-6203. PMC   3995906 . PMID   24755770.
  30. Garmire, Lana X.; Chaudhary, Kumardeep; Huang, Sijia (2017). "More Is Better: Recent Progress in Multi-Omics Data Integration Methods". Frontiers in Genetics. 8: 84. doi: 10.3389/fgene.2017.00084 . ISSN   1664-8021. PMC   5472696 . PMID   28670325.
  31. Tagkopoulos, Ilias; Kim, Minseung (2018). "Data integration and predictive modeling methods for multi-omics datasets". Molecular Omics. 14 (1): 8–25. doi:10.1039/C7MO00051K. PMID   29725673.
  32. Lin, Eugene; Lane, Hsien-Yuan (2017-01-20). "Machine learning and systems genomics approaches for multi-omics data". Biomarker Research. 5 (1): 2. doi: 10.1186/s40364-017-0082-y . ISSN   2050-7771. PMC   5251341 . PMID   28127429.
  33. 1 2 Rohart, Florian; Gautier, Benoît; Singh, Amrit; Lê Cao, Kim-Anh (2017-02-14). "mixOmics: an R package for 'omics feature selection and multiple data integration". PLOS Computational Biology. 13 (11): e1005752. Bibcode:2017PLSCB..13E5752R. bioRxiv   10.1101/108597 . doi: 10.1371/journal.pcbi.1005752 . PMC   5687754 . PMID   29099853.
  34. Tenenhaus, Arthur; Tenenhaus, Michel (2011-03-17). "Regularized Generalized Canonical Correlation Analysis". Psychometrika. 76 (2): 257–284. doi:10.1007/s11336-011-9206-8. ISSN   0033-3123.
  35. Tenenhaus, A.; Philippe, C.; Guillemot, V.; Le Cao, K.-A.; Grill, J.; Frouin, V. (2014-02-17). "Variable selection for generalized canonical correlation analysis". Biostatistics. 15 (3): 569–583. doi: 10.1093/biostatistics/kxu001 . ISSN   1465-4644. PMID   24550197.
  36. Tenenhaus, Arthur; Philippe, Cathy; Frouin, Vincent (October 2015). "Kernel Generalized Canonical Correlation Analysis". Computational Statistics & Data Analysis. 90: 114–131. doi:10.1016/j.csda.2015.04.004. ISSN   0167-9473.
  37. Tenenhaus, Michel; Tenenhaus, Arthur; Groenen, Patrick J. F. (2017-05-23). "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods". Psychometrika. 82 (3): 737–777. doi:10.1007/s11336-017-9573-x. ISSN   0033-3123. PMID   28536930.
  38. Hasin, Yehudit; Seldin, Marcus; Lusis, Aldons (2017-05-05). "Multi-omics approaches to disease". Genome Biology. 18 (1): 83. doi: 10.1186/s13059-017-1215-1 . ISSN   1474-760X. PMC   5418815 . PMID   28476144.
  39. Khan, Mohd M.; Ernst, Orna; Manes, Nathan P.; Oyler, Benjamin L.; Fraser, Iain D. C.; Goodlett, David R.; Nita-Lazar, Aleksandra (2019-03-11). "Multi-Omics Strategies Uncover Host–Pathogen Interactions". ACS Infectious Diseases. 5 (4): 493–505. doi:10.1021/acsinfecdis.9b00080. ISSN   2373-8227. PMID   30857388. S2CID   75137107.
  40. Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. Lynn; McDermott, Jason G.; Proll, Sean C. (2011-02-01). "A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm". mBio. 2 (1): e00325-10. doi:10.1128/mbio.00325-10. ISSN   2150-7511. PMC   3034460 . PMID   21285433.
  41. Mouchtouris, N; Smit, RD; Piper, K; Prashant, G; Evans, JJ; Karsy, M (4 March 2022). "A review of multiomics platforms in pituitary adenoma pathogenesis". Frontiers in Bioscience (Landmark Edition). 27 (3): 77. doi: 10.31083/j.fbl2703077 . PMID   35345309. S2CID   247560386.
  42. Yan, Jingwen; Risacher, Shannon L; Shen, Li; Saykin, Andrew J. (2017-06-30). "Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data". Briefings in Bioinformatics. 19 (6): 1370–1381. doi:10.1093/bib/bbx066. ISSN   1467-5463. PMC   6454489 . PMID   28679163.
  43. He, Feng Q.; Ollert, Markus; Balling, Rudi; Bode, Sebastian F. N.; Delhalle, Sylvie (2018-02-06). "A roadmap towards personalized immunology". npj Systems Biology and Applications. 4 (1): 9. doi:10.1038/s41540-017-0045-9. ISSN   2056-7189. PMC   5802799 . PMID   29423275.
  44. Proctor, Lita M.; Creasy, Heather H.; Fettweis, Jennifer M.; Lloyd-Price, Jason; Mahurkar, Anup; Zhou, Wenyu; Buck, Gregory A.; Snyder, Michael P.; Strauss, Jerome F. (May 2019). "The Integrative Human Microbiome Project". Nature. 569 (7758): 641–648. Bibcode:2019Natur.569..641I. doi:10.1038/s41586-019-1238-8. ISSN   1476-4687. PMC   6784865 . PMID   31142853.
  45. "After the Integrative Human Microbiome Project, what's next for the microbiome community?". Nature. 569 (7758): 599. 2019-05-29. Bibcode:2019Natur.569Q.599.. doi: 10.1038/d41586-019-01674-w . PMID   31142868. S2CID   169035865.
  46. Snyder, Michael; Weinstock, George M.; Sodergren, Erica; McLaughlin, Tracey; Tse, David; Rost, Hannes; Piening, Brian; Kukurba, Kim; Rose, Sophia Miryam Schüssler-Fiorenza (May 2019). "Longitudinal multi-omics of host–microbe dynamics in prediabetes". Nature. 569 (7758): 663–671. Bibcode:2019Natur.569..663Z. doi:10.1038/s41586-019-1236-x. ISSN   1476-4687. PMC   6666404 . PMID   31142858.
  47. Huttenhower, Curtis; Xavier, Ramnik J.; Vlamakis, Hera; Franzosa, Eric A.; Clish, Clary B.; Winter, Harland S.; Stappenbeck, Thaddeus S.; Petrosino, Joseph F.; McGovern, Dermot P. B. (May 2019). "Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases". Nature. 569 (7758): 655–662. Bibcode:2019Natur.569..655L. doi:10.1038/s41586-019-1237-9. ISSN   1476-4687. PMC   6650278 . PMID   31142855.
  48. Buck, Gregory A.; Strauss, Jerome F.; Jefferson, Kimberly K.; Hendricks-Muñoz, Karen D.; Wijesooriya, N. Romesh; Rubens, Craig E.; Gravett, Michael G.; Sexton, Amber L.; Chaffin, Donald O. (June 2019). "The vaginal microbiome and preterm birth". Nature Medicine. 25 (6): 1012–1021. doi:10.1038/s41591-019-0450-2. ISSN   1546-170X. PMC   6750801 . PMID   31142849.
  49. Kidd, Brian A; Peters, Lauren A; Schadt, Eric E; Dudley, Joel T (2014-01-21). "Unifying immunology with informatics and multiscale biology". Nature Immunology. 15 (2): 118–127. doi:10.1038/ni.2787. ISSN   1529-2908. PMC   4345400 . PMID   24448569.
  50. Harris, Eva; Kasarskis, Andrew; Wolinsky, Steven M.; Suaréz-Fariñas, Mayte; Zhu, Jun; Wang, Li; Balmaseda, Angel; Thomas, Guajira P.; Stewart, Michael G. (2018-08-01). "Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases". Molecular Systems Biology. 14 (8): e7862. doi:10.15252/msb.20177862. ISSN   1744-4292. PMC   6110311 . PMID   30150281.
  51. Firestein, Gary S.; Wang, Wei; Gay, Steffen; Ball, Scott T.; Bartok, Beatrix; Boyle, David L.; Whitaker, John W. (2015-04-22). "Integrative Omics Analysis of Rheumatoid Arthritis Identifies Non-Obvious Therapeutic Targets". PLOS ONE. 10 (4): e0124254. Bibcode:2015PLoSO..1024254W. doi: 10.1371/journal.pone.0124254 . ISSN   1932-6203. PMC   4406750 . PMID   25901943.
  52. Pulendran, Bali; Li, Shuzhao; Nakaya, Helder I. (2010-10-29). "Systems Vaccinology". Immunity. 33 (4): 516–529. doi:10.1016/j.immuni.2010.10.006. ISSN   1074-7613. PMC   3001343 . PMID   21029962.
  53. Li, Shuzhao; Sullivan, Nicole L.; Rouphael, Nadine; Yu, Tianwei; Banton, Sophia; Maddur, Mohan S.; McCausland, Megan; Chiu, Christopher; Canniff, Jennifer (2017-05-18). "Metabolic Phenotypes of Response to Vaccination in Humans". Cell. 169 (5): 862–877.e17. doi:10.1016/j.cell.2017.04.026. ISSN   0092-8674. PMC   5711477 . PMID   28502771.
  54. Meng, Chen; Kuster, Bernhard; Culhane, Aedín C; Gholami, Amin (2014). "A multivariate approach to the integration of multi-omics datasets". BMC Bioinformatics. 15 (1): 162. doi: 10.1186/1471-2105-15-162 . ISSN   1471-2105. PMC   4053266 . PMID   24884486.
  55. Ramos, Marcel; Schiffer, Lucas; Re, Angela; Azhar, Rimsha; Basunia, Azfar; Rodriguez, Carmen; Chan, Tiffany; Chapman, Phil; Davis, Sean R.; Gomez-Cabrero, David; Culhane, Aedin C.; Haibe-Kains, Benjamin; Hansen, Kasper D.; Kodali, Hanish; Louis, Marie S.; Mer, Arvind S.; Riester, Markus; Morgan, Martin; Carey, Vince; Waldron, Levi (1 November 2017). "Software for the Integration of Multiomics Experiments in Bioconductor". Cancer Research. 77 (21): e39 –e42. doi:10.1158/0008-5472.CAN-17-0344. PMC   5679241 . PMID   29092936.
  56. Seonggyun Han, Younghee Lee (2017), IMAS, Bioconductor, doi:10.18129/b9.bioc.imas , retrieved 2019-06-28
  57. Karim Mezhoud [Aut, Cre] (2017), bioCancer, Bioconductor, doi:10.18129/b9.bioc.biocancer , retrieved 2019-06-28
  58. Hernandez-Ferrer, Carles; Ruiz-Arenas, Carlos; Beltran-Gomila, Alba; González, Juan R. (2017-01-17). "MultiDataSet: an R package for encapsulating multiple data sets with application to omic data integration". BMC Bioinformatics. 18 (1): 36. doi: 10.1186/s12859-016-1455-1 . ISSN   1471-2105. PMC   5240259 . PMID   28095799.
  59. "Reap the rewards of a biological insight engine". omicX. Retrieved 2019-06-26.
  60. Conesa, Ana; Dopazo, Joaquín; García-López, Federico; García-Alcalde, Fernando (2011-01-01). "Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data". Bioinformatics. 27 (1): 137–139. doi:10.1093/bioinformatics/btq594. ISSN   1367-4803. PMC   3008637 . PMID   21098431.
  61. Conesa, Ana; Pappas, Georgios J.; Furió-Tarí, Pedro; Balzano-Nogueira, Leandro; Martínez-Mira, Carlos; Tarazona, Sonia; Hernández-de-Diego, Rafael (2018-07-02). "PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data". Nucleic Acids Research. 46 (W1): W503 –W509. doi:10.1093/nar/gky466. ISSN   0305-1048. PMC   6030972 . PMID   29800320.
  62. Chari, Raj; Coe, Bradley P.; Wedseltoft, Craig; Benetti, Marie; Wilson, Ian M.; Vucic, Emily A.; MacAulay, Calum; Ng, Raymond T.; Lam, Wan L. (2008-10-07). "SIGMA2: A system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes". BMC Bioinformatics. 9 (1): 422. doi: 10.1186/1471-2105-9-422 . ISSN   1471-2105. PMC   2571113 . PMID   18840289.
  63. Choi, Hyungwon; Ewing, Rob; Choi, Kwok Pui; Fermin, Damian; Koh, Hiromi W. L. (2018-07-23). "iOmicsPASS: a novel method for integration of multi-omics data over biological networks and discovery of predictive subnetworks". bioRxiv: 374520. doi:10.1101/374520. S2CID   92157115.
  64. Kanai, Masahiro; Maeda, Yuichi; Okada, Yukinori (2018-06-19). "Grimon: graphical interface to visualize multi-omics networks". Bioinformatics. 34 (22): 3934–3936. doi:10.1093/bioinformatics/bty488. ISSN   1367-4803. PMC   6223372 . PMID   29931190.
  65. Su, Andrew I.; Loguercio, Salvatore; Carland, Tristan M.; Ducom, Jean-Christophe; Gioia, Louis; Meißner, Tobias; Fisch, Kathleen M. (2015-06-01). "Omics Pipe: a community-based framework for reproducible multi-omics data analysis". Bioinformatics. 31 (11): 1724–1728. doi:10.1093/bioinformatics/btv061. ISSN   1367-4803. PMC   4443682 . PMID   25637560.
  66. Montague, Elizabeth; Stanberry, Larissa; Higdon, Roger; Janko, Imre; Lee, Elaine; Anderson, Nathaniel; Choiniere, John; Stewart, Elizabeth; Yandl, Gregory (June 2014). "MOPED 2.5—An Integrated Multi-Omics Resource: Multi-Omics Profiling Expression Database Now Includes Transcriptomics Data". OMICS: A Journal of Integrative Biology. 18 (6): 335–343. doi:10.1089/omi.2014.0061. ISSN   1536-2310. PMC   4048574 . PMID   24910945.
  67. Zhang, Bing; Wang, Jing; Straub, Peter; Vasaikar, Suhas V. (2018-01-04). "LinkedOmics: analyzing multi-omics data within and across 32 cancer types". Nucleic Acids Research. 46 (D1): D956 –D963. doi:10.1093/nar/gkx1090. ISSN   0305-1048. PMC   5753188 . PMID   29136207.
  68. "LinkedOmics :: Login". www.linkedomics.org. Retrieved 2019-06-26.
  69. Kan, Zhengyan; Rejto, Paul A.; Roberts, Peter; Ding, Ying; AChing, Keith; Wang, Kai; Deng, Shibing; Schefzick, Sabine; Estrella, Heather (January 2016). "OASIS: web-based platform for exploring cancer multi-omics data". Nature Methods. 13 (1): 9–10. doi:10.1038/nmeth.3692. ISSN   1548-7105. PMID   26716558. S2CID   38621277.
  70. Wu, Jiaqi; Hu, Shuofeng; Chen, Yaowen; Li, Zongcheng; Zhang, Jian; Yuan, Hanyu; Shi, Qiang; Shao, Ningsheng; Ying, Xiaomin (May 2017). "BCIP: a gene-centered platform for identifying potential regulatory genes in breast cancer". Scientific Reports. 7 (1): 45235. Bibcode:2017NatSR...745235W. doi:10.1038/srep45235. ISSN   2045-2322. PMC   5361122 . PMID   28327601.
  71. Husi, Holger; Patel, Alisha; Fernandes, Marco (2018-11-12). "C/VDdb: A multi-omics expression profiling database for a knowledge-driven approach in cardiovascular disease (CVD)". PLOS ONE. 13 (11): e0207371. Bibcode:2018PLoSO..1307371F. doi: 10.1371/journal.pone.0207371 . ISSN   1932-6203. PMC   6231654 . PMID   30419069.
  72. Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep (2016-09-16). "ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis". Scientific Reports. 6 (1): 32713. Bibcode:2016NatSR...632713G. doi:10.1038/srep32713. ISSN   2045-2322. PMC   5025660 . PMID   27633273.
  73. Tagkopoulos, Ilias; Violeta Zorraquino; Rai, Navneet; Kim, Minseung (2016-10-07). "Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli". Nature Communications. 7: 13090. Bibcode:2016NatCo...713090K. doi:10.1038/ncomms13090. ISSN   2041-1723. PMC   5059772 . PMID   27713404.
  74. Li, Guojing; Lu, Zhongfu; Lin, Jiandong; Hu, Yaowen; Yunping Huang; Wang, Baogen; Wu, Xinyi; Wu, Xiaohua; Xu, Pei (2018-02-26). "GourdBase: a genome-centered multi-omics database for the bottle gourd ( Lagenaria siceraria ), an economically important cucurbit crop". Scientific Reports. 8 (1): 3604. Bibcode:2018NatSR...8.3604W. doi:10.1038/s41598-018-22007-3. ISSN   2045-2322. PMC   5827520 . PMID   29483591.
  75. Liu, Haijun; Wang, Fan; Xiao, Yingjie; Tian, Zonglin; Wen, Weiwei; Zhang, Xuehai; Chen, Xi; Liu, Nannan; Li, Wenqiang (2016). "MODEM: multi-omics data envelopment and mining in maize". Database. 2016: baw117. doi:10.1093/database/baw117. ISSN   1758-0463. PMC   4976297 . PMID   27504011.
  76. Xu, Dong; Nguyen, Henry T.; Stacey, Gary; Gaudiello, Eric C.; Endacott, Ryan Z.; Zhang, Hongxin; Liu, Yang; Chen, Shiyuan; Fitzpatrick, Michael R. (2014-01-01). "Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding". Nucleic Acids Research. 42 (D1): D1245 –D1252. doi:10.1093/nar/gkt905. ISSN   0305-1048. PMC   3965117 . PMID   24136998.
  77. Samaras, Patroklos; Schmidt, Tobias; Frejno, Martin; Gessulat, Siegfried; Reinecke, Maria; Jarzab, Anna; Zecha, Jana; Mergner, Julia; Giansanti, Piero; Ehrlich, Hans-Christian; Aiche, Stephan (2020-01-08). "ProteomicsDB: a multi-omics and multi-organism resource for life science research". Nucleic Acids Research. 48 (D1): D1153 –D1163. doi:10.1093/nar/gkz974. ISSN   0305-1048. PMC   7145565 . PMID   31665479.