Muzzle blast

Last updated
USS Iowa (BB-61) fires a full broadside volley during a target exercise near Vieques Island, Puerto Rico, 1 July 1984, showing the muzzle blast from its 16 inch main battery and the pressure effect on the water surface surrounding the ship. Uss iowa bb-61 pr.jpg
USS Iowa (BB-61) fires a full broadside volley during a target exercise near Vieques Island, Puerto Rico, 1 July 1984, showing the muzzle blast from its 16 inch main battery and the pressure effect on the water surface surrounding the ship.

A muzzle blast is an explosive shockwave created at the muzzle of a firearm during shooting. Before a projectile leaves the gun barrel, it obturates the bore and "plugs up" the pressurized gaseous products of the propellant combustion behind it, essentially containing the gases within a closed system as a neutral element in the overall momentum of the system's physics. However, when the projectile exits the barrel, this functional seal is removed and the highly energetic bore gases are suddenly free to exit the muzzle and rapidly expand in the form of a supersonic shockwave (which can often be fast enough to momentarily overtake the projectile and affect its flight dynamics), thus creating the muzzle blast.

Contents

The muzzle blast is often broken down into two components: an auditory component [1] and a non-auditory component. [2] The auditory component is the loud "Bang!" sound of the gunshot, and is important because it can cause significant hearing loss to surrounding personnel and also give away the gun's position. The non-auditory component is the infrasonic compression wave, and can cause concussive damage to nearby items.

In addition to the blast itself, some of the gases' energy is also released as light energy, known as a muzzle flash.

Components

Soldiers covering their ears while firing a 120 mm Cardom mortar from a M1129 carrier. Live Fire.jpg
Soldiers covering their ears while firing a 120 mm Cardom mortar from a M1129 carrier.

Gun sound

The audible sound of a gun discharging, also known as the muzzle report or gunfire, may have two sources: the muzzle blast itself, which manifests as a loud and brief "pop" or "bang", and any sonic boom produced by a transonic or supersonic projectile, which manifest as a sharp whip-like crack that persists a bit longer. The muzzle blast is by far the main component of a gunfire, due to the intensity of sound energy released and the proximity to the shooter and bystanders. Muzzle blasts can easily exceed sound pressure levels of 140 decibels, which can rupture eardrums and cause permanent sensorineural hearing loss even with brief and infrequent exposure. [3] With large guns with much higher muzzle energy, for instance artillery, that danger can extend outwards a significant distance from the muzzle, [4] which mandates wearing of hearing protections for all personnel in proximity for occupational health purposes.

For small arms, suppressors help to reduce the muzzle report of firearms by providing a larger area for the propellant gas to expand, decelerate and cool before releasing sound energy into the surrounding. [5] Other muzzle devices such as blast shields can also protect hearing by deflecting the pressure wave forward and away from the shooter and bystanders. Recoil-reducing devices such as muzzle brakes however worsen potential hearing damage, as these modulate the muzzle blast by increasing the lateral vectors nearer to the shooter.

Compression wave

The overpressure wave from a firearm's muzzle blast are infrasonic and thus inaudible to human ears, but it still can be highly energy-intense due to the gases expanding at an extremely high velocity. Residual pressures at the muzzle can be a significant fraction of the peak bore pressure, especially when short barrels are used. This energy can also be regulated by a muzzle brake to reduce the recoil of the firearm, or harnessed by a muzzle booster to provide energy to cycle the action of self-loading firearms. [6]

The force of the muzzle blast can cause shock damage to nearby items around the muzzle, and with artillery, the energy is sufficiently large to cause significant damage to surrounding structures and vehicles. [7] It is thus important for the gun crew and any nearby friendly troops to stay clear of the potential directions of blast vectors, in order to avoid unnecessary collateral damages.

Recoil

Typically the majority of the blast impulse is vectored to a forward direction, creating a jet propulsion effect that exerts force back upon the barrel, resulting in an additional rearward momentum on top of the reactional momentum generated by the projectile before it exits the gun. The overall recoil applied to the firearm is thus equal and opposite to the total forward momentum of not only the projectile, but also the ejected gas. Likewise, the recoil energy given to the firearm is affected by the ejected gas. By conservation of mass, the mass of the gas ejectae will be equal to the original mass of the propellant (assuming complete burning). As a rough approximation, the ejected gas can be considered to have an effective exit velocity of where is the muzzle velocity of the projectile and is approximately constant. The total momentum of the propellant and projectile will then be:

where: is the mass of the propellant charge, equal to the mass of the ejected gas.

This expression should be substituted into the expression for projectile momentum in order to obtain a more accurate description of the recoil process. The effective velocity may be used in the energy equation as well, but since the value of α used is generally specified for the momentum equation, the energy values obtained may be less accurate. The value of the constant α is generally taken to lie between 1.25 and 1.75. It is mostly dependent upon the type of propellant used, but may depend slightly on other things such as the ratio of the length of the barrel to its radius.

Muzzle devices can reduce the recoil impulse by altering the pattern of gas expansion. For instance, muzzle brakes primarily works by diverting some of the gas ejecta towards the sides, increasing the lateral blast intensity (hence louder and more concussive to the sides) but reducing the thrust from the forward-projection (thus less recoil), with some designs claiming up to 40-60% reduction in perceived recoil. Similarly, recoil compensators divert the gas ejecta mostly upwards to counteract the muzzle rise. However, suppressors work on a different principle, not by vectoring the gas expansion laterally but instead by modulating the forward speed of the gas expansion. By using internal baffles, the gas is made to travel through a convoluted path before eventually released outside at the front of the suppressor, thus dissipating its energy over a larger area and a longer time. This reduces both the intensity of the blast (thus lower loudness) and the recoil generated (as for the same impulse, force is inversely proportional to time).

Detection

Muzzle blasts can stir up significant dust clouds, especially from large-caliber guns when firing low and flat, which can be visible from distance and thus give away the gun's position, increasing the risk of inviting counter-fire. Preventive actions may consist of wetting the soil of the surrounding ground, having the muzzle brake vector to blast up and away from the ground, or covering the area around the muzzle with a tarpaulin to shroud down as much airborne dust as possible.

Gunfire locators detect muzzle blast with microphones and triangulate the location where the shots were fired. These are commercially available, and have been installed by law enforcement agencies as remote sensors in many high-crime rate areas of urban centers. They can provide a fairly precise location of the source of a shot fired outdoors — 99% to within 33 feet (10 m) or better — and provide the data to police dispatchers within seconds of a firing. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Muzzle brake</span> Anti-recoil gunbarrel attachment

A muzzle brake or recoil compensator is a device connected to, or a feature integral to the construction of, the muzzle or barrel of a firearm or cannon that is intended to redirect a portion of propellant gases to counter recoil and unwanted muzzle rise. Barrels with an integral muzzle brake are often said to be ported.

<span class="mw-page-title-main">Recoil</span> Backward momentum of a gun when it is discharged

Recoil is the rearward thrust generated when a gun is being discharged. In technical terms, the recoil is a result of conservation of momentum, as according to Newton's third law the force required to accelerate something will evoke an equal but opposite reactional force, which means the forward momentum gained by the projectile and exhaust gases (ejectae) will be mathematically balanced out by an equal and opposite momentum exerted back upon the gun.

From the viewpoint of physics, a firearm, as for most weapons, is a system for delivering maximum destructive energy to the target with minimum delivery of energy on the shooter. The momentum delivered to the target, however, cannot be any more than that on the shooter. This is due to conservation of momentum, which dictates that the momentum imparted to the bullet is equal and opposite to that imparted to the gun-shooter system.

Muzzle velocity is the speed of a projectile with respect to the muzzle at the moment it leaves the end of a gun's barrel. Firearm muzzle velocities range from approximately 120 m/s (390 ft/s) to 370 m/s (1,200 ft/s) in black powder muskets, to more than 1,200 m/s (3,900 ft/s) in modern rifles with high-velocity cartridges such as the .220 Swift and .204 Ruger, all the way to 1,700 m/s (5,600 ft/s) for tank guns firing kinetic energy penetrator ammunition. To simulate orbital debris impacts on spacecraft, NASA launches projectiles through light-gas guns at speeds up to 8,500 m/s (28,000 ft/s). FPS and MPH are the most common American measurements for bullets. Several factors, including the type of firearm, the cartridge, and the barrel length, determine the bullet's muzzle velocity.

<span class="mw-page-title-main">Flash suppressor</span> Exhaust gas light-dimming gunbarrel attachment

A flash suppressor, also known as a flash guard, flash eliminator, flash hider, or flash cone, is a muzzle device attached to the muzzle of a rifle that reduces its visible signature while firing by cooling or dispersing the burning gases that exit the muzzle, a phenomenon typical of carbine-length weapons. Its primary intent is to reduce the chances that the shooter will be blinded in low-light shooting conditions. Contrary to popular belief, it is only a minor secondary benefit if a flash suppressor reduces the intensity of the flash visible to the enemy.

<span class="mw-page-title-main">Gun barrel</span> Firearm component which guides the projectile during acceleration

A gun barrel is a crucial part of gun-type weapons such as small firearms, artillery pieces, and air guns. It is the straight shooting tube, usually made of rigid high-strength metal, through which a contained rapid expansion of high-pressure gas(es) is used to propel a projectile out of the front end (muzzle) at a high velocity. The hollow interior of the barrel is called the bore, and the diameter of the bore is called its caliber, usually measured in inches or millimetres.

<span class="mw-page-title-main">Gunshot</span> Single discharge of a gun

A gunshot is a single discharge of a gun, typically a man-portable firearm, producing a visible flash, a powerful and loud shockwave and often chemical gunshot residue. The term can also refer to a ballistic wound caused by such a discharge.

Internal ballistics, a subfield of ballistics, is the study of the propulsion of a projectile.

<span class="mw-page-title-main">Blank (cartridge)</span> Firearms filler device that produces an explosion but does not fire a projectile

A blank is a firearm cartridge that, when fired, does not shoot a projectile like a bullet or pellet, but generates a muzzle flash and an explosive sound like a normal gunshot would. Firearms may need to be modified to allow a blank to cycle the action, and the shooter experiences less recoil with a blank than with a live round. Blanks are often used in prop guns for shooting simulations that have no need for ballistic results, but still demand light and sound effects, such as in historical reenactments, special effects for theatre, movie and television productions, combat training, for signaling, and cowboy mounted shooting. Specialised blank cartridges are also used for their propellant force in fields as varied as construction, shooting sports, and fishing and general recreation.

<span class="mw-page-title-main">Transitional ballistics</span>

Transitional ballistics, also known as intermediate ballistics, is the study of a projectile's behavior from the time it leaves the muzzle until the pressure behind the projectile is equalized, so it lies between internal ballistics and external ballistics.

<span class="mw-page-title-main">Bore evacuator</span> Device in armored fighting vehicles

A bore evacuator or fume extractor is a device which removes lingering gases and airborne residues from the barrel of an armored fighting vehicle's gun after firing, particularly in tanks and self-propelled guns. By creating a pressure differential in the barrel after the shell leaves, the bore evacuator causes most of the propellant gases and combustion residues to exit via the muzzle. Thus, when the breech opens for reloading, those gases and residues do not escape into the crew compartment and pose a hazard to the gun crew.

<span class="mw-page-title-main">Contact shot</span> Type of gunshot wound

A contact shot is a gunshot wound incurred while the muzzle of the firearm is in direct contact with the body at the moment of discharge. Contact shots are often the result of close-range gunfights, suicide, or execution.

A muzzle booster or recoil booster is a device fixed to the muzzle of a firearm, intended to harness the energy of the escaping propellant to augment the force of recoil on portions of the firearm. In spite of its name, a muzzle booster does not increase muzzle force or velocity but instead is usually used to improve the reliability and/or rate of fire of a recoil operated firearm. It was invented by Hiram Maxim in 1894.

<span class="mw-page-title-main">Muzzle flash</span> Light created by gunfire

Muzzle flash is the light — both visible and infrared — created by a muzzle blast, which is caused by the sudden release and expansion of high-temperature, high-pressure gases from the muzzle of a firearm during shooting. Both the blast and flash are products of the exothermic combustion of the propellant (gunpowder), and any remaining unburned powders reacting with ambient air. The size and shape of the muzzle flash is dependent on the combustion energy of propellant being used, the amount of combustible ejecta remaining, and any devices attached to the muzzle.

The following are terms related to firearms and ammunition topics.

<span class="mw-page-title-main">Power factor (shooting sports)</span> Ranking system for the momentum of pistol cartridges in competitive practical shooting

Power Factor (PF) in practical shooting competitions refers to a ranking system used to reward cartridges with more recoil. Power factor is a measure of the momentum of the bullet, which to some degree reflects the recoil impulse from the firearm onto the shooter.

<span class="mw-page-title-main">Muzzle rise</span>

Muzzle rise, muzzle flip or muzzle climb refers to the tendency of a firearm's or airgun's muzzle to rise up after firing. It more specifically refers to the seemingly unpredictable "jump" of the firearm's muzzle, caused by combined recoil from multiple shots being fired in quick succession. It has an adverse effect on maintaining accuracy with using automatic weapons or rapid-firing semi-automatic firearms, as a moving muzzle can throw off the shooter's aim, causing subsequent shots to miss the intended target.

<span class="mw-page-title-main">Muzzle shroud</span> Gunbarrel attachment protective against burns and blast waves

A muzzle shroud, linear compensator, blast shield, forward blast diverter or concussion reduction device (CRD) is a sleeve that attaches to and extends beyond the muzzle of a firearm in order to redirect some of the noise and concussion, or shock wave, from the muzzle blast forward and away from the shooter, and other bystanders, behind and to the sides.

Recoil operation is an operating mechanism used to implement locked-breech autoloading firearms. Recoil operated firearms use the energy of recoil to cycle the action, as opposed to gas operation or blowback operation using the pressure of the propellant gas.

<span class="mw-page-title-main">Silencer (firearms)</span> Device which reduces sound intensity or muzzle flash on a firearm

A silencer, also known as a sound suppressor, suppressor, or sound moderator, is a muzzle device that suppresses the blast created when a gun is discharged, thereby reducing the acoustic intensity of the muzzle report and jump, by modulating the speed and pressure of the propellant gas released from the muzzle. Like other muzzle devices, a silencer can be a detachable accessory mounted to the muzzle, or an integral part of the barrel.

References

  1. Muzzle Blast Sound Intensity, Firearm Sound Pressure Level
  2. Blast Overpressure Studies. Nonauditory Damage Risk Assessment for Simulated Muzzle Blast from a l2Omm Ml2l Mortar System. (abstract)
  3. Hearing protection FAQ Archived 2007-06-28 at the Wayback Machine
  4. Prediction of Standoff Distances to Prevent Loss of Hearing from Muzzle Blast
  5. "Definition for "sound suppressor"". MidwayUSA. Archived from the original on 2011-07-14. Retrieved 2020-12-31.
  6. "Definition for "compensator"". MidwayUSA. Archived from the original on 2011-07-14. Retrieved 2020-12-31.
  7. Muzzle Blast Damage to Combat Vehicles [ dead link ] (abstract)
  8. "Random Gunfire Problems and Gunshot Detection Systems" (PDF). U.S. Department of Justice. December 1999.