NCR Century 100

Last updated
NCR Century 100 Logo Century 615-100 logo.jpg
NCR Century 100 Logo

The NCR Century 100 was NCR's first all integrated circuit computer built in 1968. [1] All logic gates were created by wire-wrapping NAND gates together to form flip-flops and other complex circuits. The console of the system had only 18 lights and switches and allowed entry of a boot routine, or changes to loaded programs or data in memory. A typewriter console was also available.

Contents

Peripherals

The 615-100 Series integrated a complete data processing system that had 16KB or 32KB of short rod memory, an 80-column punched card reader or paper tape reader, two 5MB removable disk drives, and a 600-line-per-minute line printer. The system could be provided with a punched paper tape reader, or an external card reader/punch, and also allowed for the attachment of multiple 9-track, 1/2-inch, reel-to-reel magnetic tape drives. Two more disk drives could be attached to the system.

The Century series used an instruction set with two instruction lengths: 4 bytes (32 bits) and 8 bytes (64 bits).

Rod memory

The memory of the Century Series computers used machine-made, short, iron-oxide-coated ceramic rods— 116 inch (1.6 mm) long and approximately the diameter of a human hair— as their random access memories, instead of the hand-labor-intensive core memories that were used by other computers of the time. The economy of machine assembly was augmented by selling rod memory without paying patent royalties on core memory to NCR's competitor, IBM. Each 16K memory module consisted of two stacks, each stack containing sixteen planes of 4608 rods. [2]

Disk drives

The Model 655 disk drive used a removable disk pack. It was the first by NCR to employ floating or flying heads with 12 read/write heads per surface. [3] This reduced track-to-track movement and thus access times. However, this meant that there were 12 times more heads per drive, increasing the likelihood of head crashes. These flying heads were moved using a 16 position magnetic actuator. The actuator used four different magnets to create the 16 positions. The magnetic actuators were later replaced with hydraulic actuators, and later yet the hydraulic actuators were replaced with voice coil actuators. In 1972 NCR sold its disk drive business to Magnetics Peripherals, Inc., a joint venture with CDC and thereafter used disk drives from the joint venture.

Programming languages

The NCR Century 100 supported several programming languages: NEAT/3 (National's Easy Auto-coding Technique, a later version of the NEAT/1 language that ran on the NCR 315 computer system), COBOL, FORTRAN, RPG-II, NEAT/AM, and BASIC.

Hardware

The system had 39 hardware instructions. Early versions of the hardware did not have hardware multiply or divide instructions; they were instead emulated using software.[ citation needed ] The machine used ASCII 8-bit code. It also supported packed decimal fields with or without a "sign". Without a sign, a (positive) number could be stored in just two bytes, with each of the 8 bits of the character holding 2 digits, such as 0001 0010 0011 0100 for 1234.

A typical hardware configuration consisted of a panel with toggle switches and lights to enter the boot loader, a Teletype writer to input operating system commands, a punched card reader that gravity feed the cards (they dropped into the read station, and were ejected and turned 180 degrees and then placed in the exit hopper), two 655 disk drives, and a printer that printed about 600 lines per minute. The boot loader and peripherals were usually on punched cards, which notified the operating system which devices to use via a PAL (Peripheral Availability List) entry cards. The "go" command to the operating system was infamous: "EE" control-G (bell).[ citation needed ]

The Century 100 lacked hardware sense switches, which the Century 200 had. Programs that attempted to access sense switches on the Century 100 would simply halt with the humorous message: "You find the switches, and I'll test them!" displayed on the console typewriter.[ citation needed ]

A unique feature of the Century's hardware/software design allowed the normal 4K executive to be reduced to a mere 512 bytes, freeing up precious storage.[ citation needed ]

The Century 50 was slower than the Century 100 and only had 16K of the thin film rod memory.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">IBM System/360</span> IBM mainframe computer family (1964–1977)

The IBM System/360 (S/360) is a family of mainframe computer systems that was announced by IBM on April 7, 1964, and delivered between 1965 and 1978. It was the first family of computers designed to cover both commercial and scientific applications and a complete range of applications from small to large. The design distinguished between architecture and implementation, allowing IBM to release a suite of compatible designs at different prices. All but the only partially compatible Model 44 and the most expensive systems use microcode to implement the instruction set, featuring 8-bit byte addressing and binary, decimal and hexadecimal floating-point calculations.

<span class="mw-page-title-main">Booting</span> Process of starting a computer

In computing, booting is the process of starting a computer as initiated via hardware such as a button or by a software command. After it is switched on, a computer's central processing unit (CPU) has no software in its main memory, so some process must load software into memory before it can be executed. This may be done by hardware or firmware in the CPU, or by a separate processor in the computer system.

<span class="mw-page-title-main">IBM 1620</span> Small IBM scientific computer released in 1959

The IBM 1620 was announced by IBM on October 21, 1959, and marketed as an inexpensive scientific computer. After a total production of about two thousand machines, it was withdrawn on November 19, 1970. Modified versions of the 1620 were used as the CPU of the IBM 1710 and IBM 1720 Industrial Process Control Systems.

<span class="mw-page-title-main">UNIVAC</span> Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

In computing, a removable media is a data storage media that is designed to be readily inserted and removed from a system. Most early removable media, such as floppy disks and optical discs, require a dedicated read/write device to be installed in the computer, while others, such as USB flash drives, are plug-and-play with all the hardware required to read them built into the device, so only need a driver software to be installed in order to communicate with the device. Some removable media readers/drives are integrated into the computer case, while others are standalone devices that need to be additionally installed or connected.

<span class="mw-page-title-main">IBM 1130</span> 16-bit IBM minicomputer introduced in 1965

The IBM 1130 Computing System, introduced in 1965, was IBM's least expensive computer at that time. A binary 16-bit machine, it was marketed to price-sensitive, computing-intensive technical markets, like education and engineering, succeeding the decimal IBM 1620 in that market segment. Typical installations included a 1 megabyte disk drive that stored the operating system, compilers and object programs, with program source generated and maintained on punched cards. Fortran was the most common programming language used, but several others, including APL, were available.

<span class="mw-page-title-main">IBM System/3</span> IBM midrange computer (1969–1985)

The IBM System/3 was an IBM midrange computer introduced in 1969, and marketed until 1985. It was produced by IBM Rochester in Minnesota as a low-end business computer aimed at smaller organizations that still used IBM 1400 series computers or unit record equipment. The first member of what IBM refers to as their "midrange" line, it also introduced the RPG II programming language. It is the first ancestor in the product line whose current version is the IBM i series and includes the highly successful AS/400.

<span class="mw-page-title-main">Honeywell 200</span>

The Honeywell 200 was a character-oriented two-address commercial computer introduced by Honeywell in December 1963, the basis of later models in Honeywell 200 Series, including 1200, 1250, 2200, 3200, 4200 and others, and the character processor of the Honeywell 8200 (1968).

<span class="mw-page-title-main">CDC 6000 series</span>

The CDC 6000 series is a discontinued family of mainframe computers manufactured by Control Data Corporation in the 1960s. It consisted of the CDC 6200, CDC 6300, CDC 6400, CDC 6500, CDC 6600 and CDC 6700 computers, which were all extremely rapid and efficient for their time. Each is a large, solid-state, general-purpose, digital computer that performs scientific and business data processing as well as multiprogramming, multiprocessing, Remote Job Entry, time-sharing, and data management tasks under the control of the operating system called SCOPE. By 1970 there also was a time-sharing oriented operating system named KRONOS. They were part of the first generation of supercomputers. The 6600 was the flagship of Control Data's 6000 series.

<span class="mw-page-title-main">CER-12</span> Third-generation digital computer

CER model 12 was a third-generation digital computer developed by Mihajlo Pupin Institute (Serbia) in 1971 and intended for "business and statistical data processing". However, the manufacturer also stated, at the time, that having in mind its architecture and performance, it can also be used successfully in solving "wide array of scientific and technical issues". Computer CER-12 consisted of multiple modules connected via wire wrap and connectors.

<span class="mw-page-title-main">HRS-100</span>

HRS-100, ХРС-100, GVS-100 or ГВС-100, was a third generation hybrid computer developed by Mihajlo Pupin Institute and engineers from USSR in the period from 1968 to 1971. Three systems HRS-100 were deployed in Academy of Sciences of USSR in Moscow and Novosibirsk (Akademgorodok) in 1971 and 1978. More production was contemplated for use in Czechoslovakia and German Democratic Republic (DDR), but that was not realised.

<span class="mw-page-title-main">Front panel</span>

A front panel was used on early electronic computers to display and allow the alteration of the state of the machine's internal registers and memory. The front panel usually consisted of arrays of indicator lamps, digit and symbol displays, toggle switches, dials, and push buttons mounted on a sheet metal face plate. In early machines, CRTs might also be present. Prior to the development of CRT system consoles, many computers such as the IBM 1620 had console typewriters.

<span class="mw-page-title-main">SDS 930</span> Commercial 24-bit computer using bipolar junction transistors sold in the 1960s

The SDS 930 was a commercial 24-bit computer using bipolar junction transistors sold by Scientific Data Systems. It was announced in December 1963, with first installations in June 1964.

<span class="mw-page-title-main">NCR 315</span>

The NCR 315 Data Processing System, released in January 1962 by NCR, is a second-generation computer. All printed circuit boards use resistor–transistor logic (RTL) to create the various logic elements. It uses 12-bit slab memory structure using magnetic-core memory. The instructions can use a memory slab as either two 6-bit alphanumeric characters or as three 4-bit BCD digits. Basic memory is 5000 "slabs" of handmade core memory, which is expandable to a maximum of 40,000 slabs in four refrigerator-size cabinets. The main processor includes three cabinets and a console section that houses the power supply, keyboard, output writer, and a panel with lights that indicate the current status of the program counter, registers, arithmetic accumulator, and system errors. Input/Output is by direct parallel connections to each type of peripheral through a two-cable bundle with 1-inch-thick cables. Some devices like magnetic tape and the CRAM are daisy-chained to allow multiple drives to be connected.

<span class="mw-page-title-main">CDC 160 series</span> Minicomputer

The CDC 160 series was a series of minicomputers built by Control Data Corporation. The CDC 160 and CDC 160-A were 12-bit minicomputers built from 1960 to 1965; the CDC 160G was a 13-bit minicomputer, with an extended version of the CDC 160-A instruction set, and a compatibility mode in which it did not use the 13th bit. The 160 was designed by Seymour Cray - reportedly over a long three-day weekend. It fit into the desk where its operator sat.

This glossary of computer hardware terms is a list of definitions of terms and concepts related to computer hardware, i.e. the physical and structural components of computers, architectural issues, and peripheral devices.

ICT 1900 was a family of mainframe computers released by International Computers and Tabulators (ICT) and later International Computers Limited (ICL) during the 1960s and 1970s. The 1900 series was notable for being one of the few non-American competitors to the IBM System/360, enjoying significant success in the European and British Commonwealth markets.

<span class="mw-page-title-main">IBM System/360 Model 20</span> Low-end IBM computer model from 1960s

The IBM System/360 Model 20 is the smallest member of the IBM System/360 family announced in November 1964. The Model 20 supports only a subset of the System/360 instruction set, with binary numbers limited to 16 bits and no floating point. In later years it would have been classified as a 16-bit minicomputer rather than a mainframe, but the term "minicomputer" was not current, and in any case IBM wanted to emphasize the compatibility of the Model 20 rather than its differences from the rest of the System/360 line. It does, however, have the full System/360 decimal instruction set, that allows for addition, subtraction, product, and dividend of up to 31 decimal digits.

The DATANET-30, or DN-30 for short, was a computer manufactured by General Electric designed in 1961-1963 to be used as a communications computer. It was later used as a front-end processor for data communications. It became the first front end communications computer. The names on the patent were Don Birmingham, Bob McKenzie, Bud Pine, and Bill Hill.

<span class="mw-page-title-main">IBM System/360 Model 25</span> Low-end IBM computer model from late-1960s

The IBM System/360 Model 25 is a low-end member of the IBM System/360 family. It was announced on January 3, 1968, 3 years before the IBM System/360 Model 22, as a "bridge between its old and new computing systems".

References

  1. Reilly, Edwin D. (2003). Milestones in computer science and information technology . Greenwood Publishing Group. p.  181. ISBN   1-57356-521-0. NCR Century 100.
  2. NCR Century 100 Processor Reference Manual (PDF). NCR. February 1970.
  3. "NCR REGISTERS INCREASED PRODUCTION, SALES, GETS INTO EDP MAINSTREAM," Datamation, August 1969, p.111