NLN (gene)

Last updated
NLN
Protein NLN PDB 1i1i.png
Identifiers
Aliases NLN , AGTBP, EP24.16, MEP, MOP, neurolysin
External IDs OMIM: 611530 MGI: 1923055 HomoloGene: 69315 GeneCards: NLN
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_020726

NM_029447

RefSeq (protein)

NP_065777

NP_083723

Location (UCSC) Chr 5: 65.72 – 65.87 Mb Chr 13: 104.16 – 104.25 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Neurolysin, mitochondrial is a protein that in humans is encoded by the NLN gene. [5] [6] It is a 78-kDa enzyme, widely distributed in mammalian tissues and found in various subcellular locations that vary with cell type. [7] Neurolysin exemplifies the ability of neuropeptidases to target various cleavage site sequences by hydrolyzing them in vitro, [8] [9] and metabolism of neurotensin is the most important role of neurolysin in vivo. [10] Neurolysin has also been implicated in pain control, [11] [12] [13] blood pressure regulation, [14] [15] sepsis, [16] reproduction, [17] [18] cancer biology [19] pathogenesis of stroke, [20] and glucose metabolism. [21]

Contents

Structure

Gene

The NLN gene lies on the chromosome location of 5q12.3 and consists of 14 exons.

Protein

Neurolysin, with 704 amino acid residues, is a zinc metalloendopeptidase with a conserved HEXXH motif. It has an overall prolate ellipsoid shape, with a deep narrow channel dividing it into two roughly equal domains. [22] The catalytic site is contained within a thermolysin-like region found in many metallopeptidases and located in the domain near the floor of the channel. [10] [23]

Function

Neurolysin hydrolyzes only peptides containing 5-17 amino acids by cleaving at a limited set of sites. [22] [24] [25] The specificity of neurolysin for small bioactive peptides is due to the presence of large structural elements erected over its active site region that allow substrates access only through a deep narrow channel. [26] In vitro, neurolysin exemplifies the ability of some neuropeptidases to target diverse cleavage site sequences. [8] [9] In vivo, their most established role is cleaving neurotensin between its 10th and 11th residues to produce inactive fragments and it has been recently identified as a non-AT1-non-AT2 angiotensin-binding site, with function pertaining to the rennin-angiotensin system. [10] [27] [28] Neurotensin is involved in many processes including mast cell degranulation and regulation of central nervous system dopaminergic and cholinergic circuits. [29] [30] [31] A lower level of neurotensin is associated with schizophrenia, [32] and it is implicated in cardiovascular disorders, addiction, Huntington disease and Parkinson disease. [30] [33] [34] [35] Neurotensin is also one of the most potent blockers of pain perception. [36]

Clinical significance

Metabolism of neurotensin is the most important role of neurolysin in vivo and has been identified as a non-AT1-non-AT2 angiotensin-binding site. [10] [27] [28] Neurotensin is involved in many processes including mast cell degranullation and regulation of central nervous system dopaminergic and cholinergic circuits. [29] [30] [31] Neurolysin has also been implicated in pain control, [11] [12] [13] blood pressure regulation, [14] [15] sepsis, [16] reproduction, [17] [18] cancer biology, [19] pathogenesis of stroke, [20] and glucose metabolism. [21] Inhibition of neurolysin has been shown to produce neurotensin-induced analgesia in mice, [37] and control of neurotensin levels by neurolysin may serve as a potential target for antipsychotic therapies.

Interactions

This protein is known to interact with:

Related Research Articles

<span class="mw-page-title-main">Angiotensin</span> Group of peptide hormones in mammals

Angiotensin is a peptide hormone that causes vasoconstriction and an increase in blood pressure. It is part of the renin–angiotensin system, which regulates blood pressure. Angiotensin also stimulates the release of aldosterone from the adrenal cortex to promote sodium retention by the kidneys.

<span class="mw-page-title-main">Angiotensin-converting enzyme</span> Mammalian protein found in humans

Angiotensin-converting enzyme, or ACE, is a central component of the renin–angiotensin system (RAS), which controls blood pressure by regulating the volume of fluids in the body. It converts the hormone angiotensin I to the active vasoconstrictor angiotensin II. Therefore, ACE indirectly increases blood pressure by causing blood vessels to constrict. ACE inhibitors are widely used as pharmaceutical drugs for treatment of cardiovascular diseases.

The angiotensin II receptors, (ATR1) and (ATR2), are a class of G protein-coupled receptors with angiotensin II as their ligands. They are important in the renin–angiotensin system: they are responsible for the signal transduction of the vasoconstricting stimulus of the main effector hormone, angiotensin II.

<span class="mw-page-title-main">Angiotensin II receptor blocker</span> Group of pharmaceuticals that modulate the renin–angiotensin system

Angiotensin II receptor blockers (ARBs), formally angiotensin II receptor type 1 (AT1) antagonists, also known as angiotensin receptor blockers, angiotensin II receptor antagonists, or AT1 receptor antagonists, are a group of pharmaceuticals that bind to and inhibit the angiotensin II receptor type 1 (AT1) and thereby block the arteriolar contraction and sodium retention effects of renin–angiotensin system.

<span class="mw-page-title-main">Enteroendocrine cell</span>

Enteroendocrine cells are specialized cells of the gastrointestinal tract and pancreas with endocrine function. They produce gastrointestinal hormones or peptides in response to various stimuli and release them into the bloodstream for systemic effect, diffuse them as local messengers, or transmit them to the enteric nervous system to activate nervous responses. Enteroendocrine cells of the intestine are the most numerous endocrine cells of the body. They constitute an enteric endocrine system as a subset of the endocrine system just as the enteric nervous system is a subset of the nervous system. In a sense they are known to act as chemoreceptors, initiating digestive actions and detecting harmful substances and initiating protective responses. Enteroendocrine cells are located in the stomach, in the intestine and in the pancreas. Microbiota play key roles in the intestinal immune and metabolic responses in these enteroendocrine cells via their fermentation product, acetate.

<span class="mw-page-title-main">Prolyl endopeptidase</span>

Prolyl endopeptidase (PE) also known as prolyl oligopeptidase or post-proline cleaving enzyme is an enzyme that in humans is encoded by the PREP gene.

<span class="mw-page-title-main">Neprilysin</span> Mammalian protein found in Homo sapiens

Neprilysin, also known as membrane metallo-endopeptidase (MME), neutral endopeptidase (NEP), cluster of differentiation 10 (CD10), and common acute lymphoblastic leukemia antigen (CALLA) is an enzyme that in humans is encoded by the MME gene. Neprilysin is a zinc-dependent metalloprotease that cleaves peptides at the amino side of hydrophobic residues and inactivates several peptide hormones including glucagon, enkephalins, substance P, neurotensin, oxytocin, and bradykinin. It also degrades the amyloid beta peptide whose abnormal folding and aggregation in neural tissue has been implicated as a cause of Alzheimer's disease. Synthesized as a membrane-bound protein, the neprilysin ectodomain is released into the extracellular domain after it has been transported from the Golgi apparatus to the cell surface.

<span class="mw-page-title-main">Angiotensin II receptor type 2</span> Protein-coding gene in humans

Angiotensin II receptor type 2, also known as the AT2 receptor is a protein that in humans is encoded by the AGTR2 gene.

<span class="mw-page-title-main">Neurotensin receptor 1</span> Protein-coding gene in the species Homo sapiens

Neurotensin receptor type 1 is a protein that in humans is encoded by the NTSR1 gene. For a crystal structure of NTS1, see pdb code 4GRV. In addition, high-resolution crystal structures have been determined in complex with the peptide full agonist NTS8-13, the non-peptide full agonist SRI-9829, the partial agonist RTI-3a, and the antagonists / inverse agonists SR48692 and SR142948A, as well as in the ligand-free apo state., see PDB codes 6YVR (NTSR1-H4X:NTS8–13), 6Z4V (NTSR1-H4bmX:NTS8–13), 6Z8N (NTSR1-H4X:SRI-9829), 6ZA8 (NTSR1-H4X:RTI-3a), 6Z4S (NTSR1-H4bmX:SR48692), 6ZIN (NTSR1-H4X:SR48692), 6Z4Q, and 6Z66.

<span class="mw-page-title-main">THOP1</span> Protein-coding gene in the species Homo sapiens

Thimet oligopeptidase is an enzyme that in humans is encoded by the THOP1 gene.

<span class="mw-page-title-main">MEP1A</span> Protein-coding gene in the species Homo sapiens

Meprin A subunit alpha also known as endopeptidase-2 or PABA peptide hydrolase is the alpha subunit of the meprin A enzyme that in humans is encoded by the MEP1A gene. The MEP1A locus is on chromosome 6p in humans and on chromosome 17 in mice.

<span class="mw-page-title-main">CPA3</span> Protein-coding gene in the species Homo sapiens

Carboxypeptidase A3 (mast cell carboxypeptidase A), also known as CPA3, is an enzyme which in humans is encoded by the CPA3 gene. The "CPA3" gene expression has only been detected in mast cells and mast-cell-like lines, and CPA3 is located in secretory granules. CPA3 is one of 8-9 members of the A/B subfamily that includes the well-studied pancreatic enzymes carboxypeptidase A1 (CPA1), carboxypeptidase A2 (CPA2), and carboxypeptidase B. This subfamily includes 6 carboxypeptidase A-like enzymes, numbered 1-6. The enzyme now called CPA3 was originally named mast cell carboxypeptidase A, and another protein was initially called CPA3. A gene nomenclature committee renamed mast cell carboxypeptidase A as CPA3, and the original CPA3 reported by Huang et al. became CPA4 to reflect the order of their discovery.

Hemopressin (Hp) is an alpha hemoglobin fragment with the sequence PVNFKFLSH, originally identified in extracts of rat brain using an enzyme capture technique. It binds cannabinoid receptors, acting as an inverse agonist at CB1 receptors. Longer forms of hemopressin containing 2-3 additional amino acids on the N-terminus have been identified in extracts of mouse brain. These longer hemopressin peptides, named RVD-Hpα and VD-Hpα, bind to CB1 receptors and were originally reported to be agonists. In addition to the Hp peptides from alpha hemoglobin, a related peptide from beta hemoglobin has been found in mouse brain extracts; this peptide, named VD-Hpβ, is also an agonist at CB1 cannabinoid receptors. Hemopressin is not an endogenous peptide but rather an extraction artefact. The only endogenous peptide found endogenously at physiological conditions is RVD-hemopressin (pepcan-12), which has more recently been shown to be a negative allosteric modulator of CB1 receptors and positive allosteric modulator of CB2 receptors. RVD-hemopressin (pepcan-12) is generated from a pro-peptide called pepcan-23 and these peptides are exclusively found in noradrenergic neurons in the brain and in the adrenal medulla.

<span class="mw-page-title-main">Ecadotril</span> Chemical compound

Ecadotril is a neutral endopeptidase inhibitor ((NEP) EC 3.4.24.11) and determined by the presence of peptidase family M13 as a neutral endopeptidase inhibited by phosphoramidon. Ecadotril is the (S)-enantiomer of racecadotril. NEP-like enzymes include the endothelin-converting enzymes. The peptidase M13 family believed to activate or inactivate oligopeptide (pro)-hormones such as opioid peptides, neprilysin is another member of this group, in the case of the metallopeptidases and aspartic, the nucleophiles clan or family for example MA, is an activated water molecule. The peptidase domain for members of this family also contains a bacterial member and resembles that of thermolysin the predicted active site residues for members of this family and thermolysin occur in the motif HEXXH. Thermolysin complexed with the inhibitor (S)-thiorphan are isomeric thiol-containing inhibitors of endopeptidase EC 24-11 (also called "enkephalinase").

<span class="mw-page-title-main">Oligopeptidase</span> Enzymes that cleaves peptides but not proteins

An Oligopeptidase is an enzyme that cleaves peptides but not proteins. This property is due to its structure: the active site of this enzyme is located at the end of a narrow cavity which can only be reached by peptides.

<span class="mw-page-title-main">Sacubitril/valsartan</span> Combination medication

Sacubitril/valsartan, sold under the brand name Entresto, is a fixed-dose combination medication for use in heart failure. It consists of the neprilysin inhibitor sacubitril and the angiotensin receptor blocker valsartan. The combination is sometimes described as an "angiotensin receptor-neprilysin inhibitor" (ARNi). In 2016, the American College of Cardiology/American Heart Association Task Force recommended it as a replacement for an ACE inhibitor or an angiotensin receptor blocker in people with heart failure with reduced ejection fraction.

Neurolysin is an enzyme. This enzyme catalyses the following chemical reaction

Oligopeptidase A is an enzyme. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Thimet oligopeptidase</span>

Thimet oligopeptidases, also known as TOPs, are a type of M3 metallopeptidases. These enzymes can be found in animals and plants, showing distinctive functions. In animals and humans, they are involved in the degradation of peptides, such as bradykinin, neurotensin, angiotensin I, and Aβ peptide, helping to regulate physiological processes. In plants, their role is related to the degradation of targeting peptides and the immune response to pathogens through Salicylic Acid (SA)-dependent stress signaling. In Arabidopsis thaliana—recognized as a model plant for scientific studies—two thimet oligopeptidases, known as TOP1 and TOP2, have been identified as targets for salicylic acid binding in the plant. These TOP enzymes are key components to understand the SA-mediated signaling where interactions exist with different components and most of the pathways are unknown.

<span class="mw-page-title-main">Angiotensin (1-7)</span> Chemical compound

Angiotensin (1-7) is an active heptapeptide of the renin–angiotensin system (RAS).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000123213 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000021710 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N, Ohara O (October 1999). "Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Research. 6 (5): 337–45. doi: 10.1093/dnares/6.5.337 . PMID   10574462.
  6. "Entrez Gene: NLN neurolysin (metallopeptidase M3 family)".
  7. Barrett AJ, Brown MA, Dando PM, Knight CG, McKie N, Rawlings ND, Serizawa A (1995). "Thimet oligopeptidase and oligopeptidase M or neurolysin". Proteolytic Enzymes: Aspartic and Metallo Peptidases. Methods in Enzymology. Vol. 248. pp. 529–56. doi:10.1016/0076-6879(95)48034-x. ISBN   9780121821494. PMID   7674943.
  8. 1 2 Oliveira V, Campos M, Hemerly JP, Ferro ES, Camargo AC, Juliano MA, Juliano L (May 2001). "Selective neurotensin-derived internally quenched fluorogenic substrates for neurolysin (EC 3.4.24.16): comparison with thimet oligopeptidase (EC 3.4.24.15) and neprilysin (EC 3.4.24.11)". Analytical Biochemistry. 292 (2): 257–65. doi:10.1006/abio.2001.5083. PMID   11355859.
  9. 1 2 Rioli V, Kato A, Portaro FC, Cury GK, te Kaat K, Vincent B, Checler F, Camargo AC, Glucksman MJ, Roberts JL, Hirose S, Ferro ES (September 1998). "Neuropeptide specificity and inhibition of recombinant isoforms of the endopeptidase 3.4.24.16 family: comparison with the related recombinant endopeptidase 3.4.24.15". Biochemical and Biophysical Research Communications. 250 (1): 5–11. doi:10.1006/bbrc.1998.8941. PMID   9735321.
  10. 1 2 3 4 5 Hines CS, Ray K, Schmidt JJ, Xiong F, Feenstra RW, Pras-Raves M, de Moes JP, Lange JH, Melikishvili M, Fried MG, Mortenson P, Charlton M, Patel Y, Courtney SM, Kruse CG, Rodgers DW (December 2014). "Allosteric inhibition of the neuropeptidase neurolysin". The Journal of Biological Chemistry. 289 (51): 35605–19. doi: 10.1074/jbc.M114.620930 . PMC   4271243 . PMID   25378390.
  11. 1 2 Jeske NA, Berg KA, Cousins JC, Ferro ES, Clarke WP, Glucksman MJ, Roberts JL (April 2006). "Modulation of bradykinin signaling by EP24.15 and EP24.16 in cultured trigeminal ganglia". Journal of Neurochemistry. 97 (1): 13–21. doi:10.1111/j.1471-4159.2006.03706.x. PMID   16515556. S2CID   24664221.
  12. 1 2 Doulut S, Dubuc I, Rodriguez M, Vecchini F, Fulcrand H, Barelli H, Checler F, Bourdel E, Aumelas A, Lallement JC (May 1993). "Synthesis and analgesic effects of N-[3-[(hydroxyamino) carbonyl]-1-oxo-2(R)-benzylpropyl]-L-isoleucyl-L-leucine, a new potent inhibitor of multiple neurotensin/neuromedin N degrading enzymes". Journal of Medicinal Chemistry. 36 (10): 1369–79. doi:10.1021/jm00062a009. PMID   8496905.
  13. 1 2 Barelli H, Fox-Threlkeld JE, Dive V, Daniel EE, Vincent JP, Checler F (May 1994). "Role of endopeptidase 3.4.24.16 in the catabolism of neurotensin, in vivo, in the vascularly perfused dog ileum". British Journal of Pharmacology. 112 (1): 127–32. doi:10.1111/j.1476-5381.1994.tb13041.x. PMC   1910296 . PMID   8032633.
  14. 1 2 Oliveira EB, Souza LL, Sivieri DO, Bispo-da-Silva LB, Pereira HJ, Costa-Neto CM, Sousa MV, Salgado MC (December 2007). "Carboxypeptidase B and other kininases of the rat coronary and mesenteric arterial bed perfusates". American Journal of Physiology. Heart and Circulatory Physiology. 293 (6): H3550-7. doi:10.1152/ajpheart.00784.2007. PMID   17906107. S2CID   23115730.
  15. 1 2 Blais PA, Côté J, Morin J, Larouche A, Gendron G, Fortier A, Regoli D, Neugebauer W, Gobeil F (August 2005). "Hypotensive effects of hemopressin and bradykinin in rabbits, rats and mice. A comparative study". Peptides. 26 (8): 1317–22. doi:10.1016/j.peptides.2005.03.026. PMID   16042973. S2CID   36463460.
  16. 1 2 3 Piliponsky AM, Chen CC, Nishimura T, Metz M, Rios EJ, Dobner PR, Wada E, Wada K, Zacharias S, Mohanasundaram UM, Faix JD, Abrink M, Pejler G, Pearl RG, Tsai M, Galli SJ (April 2008). "Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis". Nature Medicine. 14 (4): 392–8. doi:10.1038/nm1738. PMC   2873870 . PMID   18376408.
  17. 1 2 Dauch P, Masuo Y, Vincent JP, Checler F (November 1992). "Endopeptidase 24-16 in murines: tissue distribution, cerebral regionalization, and ontogeny". Journal of Neurochemistry. 59 (5): 1862–7. doi:10.1111/j.1471-4159.1992.tb11021.x. PMID   1402928. S2CID   41539518.
  18. 1 2 Shrimpton CN, Smith AI, Lew RA (October 2002). "Soluble metalloendopeptidases and neuroendocrine signaling". Endocrine Reviews. 23 (5): 647–64. doi: 10.1210/er.2001-0032 . PMID   12372844.
  19. 1 2 Paschoalin T, Carmona AK, Rodrigues EG, Oliveira V, Monteiro HP, Juliano MA, Juliano L, Travassos LR (9 July 2007). "Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth". Molecular Cancer. 6: 44. doi: 10.1186/1476-4598-6-44 . PMC   1965469 . PMID   17620116.
  20. 1 2 Rashid M, Wangler NJ, Yang L, Shah K, Arumugam TV, Abbruscato TJ, Karamyan VT (April 2014). "Functional up-regulation of endopeptidase neurolysin during post-acute and early recovery phases of experimental stroke in mouse brain". Journal of Neurochemistry. 129 (1): 179–89. doi: 10.1111/jnc.12513 . PMID   24164478. S2CID   206089871.
  21. 1 2 Cavalcanti DM, Castro LM, Rosa Neto JC, Seelaender M, Neves RX, Oliveira V, Forti FL, Iwai LK, Gozzo FC, Todiras M, Schadock I, Barros CC, Bader M, Ferro ES (May 2014). "Neurolysin knockout mice generation and initial phenotype characterization". The Journal of Biological Chemistry. 289 (22): 15426–40. doi: 10.1074/jbc.M113.539148 . PMC   4140899 . PMID   24719317.
  22. 1 2 Brown CK, Madauss K, Lian W, Beck MR, Tolbert WD, Rodgers DW (March 2001). "Structure of neurolysin reveals a deep channel that limits substrate access". Proceedings of the National Academy of Sciences of the United States of America. 98 (6): 3127–32. Bibcode:2001PNAS...98.3127B. doi: 10.1073/pnas.051633198 . PMC   30618 . PMID   11248043.
  23. Matthews BW, Weaver LH, Kester WR (December 1974). "The conformation of thermolysin". The Journal of Biological Chemistry. 249 (24): 8030–44. doi: 10.1016/S0021-9258(19)42067-X . PMID   4214815.
  24. Ray K, Hines CS, Rodgers DW (September 2002). "Mapping sequence differences between thimet oligopeptidase and neurolysin implicates key residues in substrate recognition". Protein Science. 11 (9): 2237–46. doi:10.1110/ps.0216302. PMC   2373592 . PMID   12192079.
  25. Yanagihara N, Toyohira Y, Yamamoto H, Ohta Y, Tsutsui M, Miyamoto E, Izumi F (September 1994). "Occurrence and activation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in bovine adrenal medullary cells". Molecular Pharmacology. 46 (3): 423–30. PMID   7935321.
  26. Rioli V, Gozzo FC, Heimann AS, Linardi A, Krieger JE, Shida CS, Almeida PC, Hyslop S, Eberlin MN, Ferro ES (March 2003). "Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme". The Journal of Biological Chemistry. 278 (10): 8547–55. doi: 10.1074/jbc.M212030200 . PMID   12500972.
  27. 1 2 Swindle JD, Santos KL, Speth RC (October 2013). "Pharmacological characterization of a novel non-AT1, non-AT2 angiotensin binding site identified as neurolysin". Endocrine. 44 (2): 525–31. doi:10.1007/s12020-013-9898-x. PMC   3742649 . PMID   23412923.
  28. 1 2 Wangler NJ, Santos KL, Schadock I, Hagen FK, Escher E, Bader M, Speth RC, Karamyan VT (January 2012). "Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site". The Journal of Biological Chemistry. 287 (1): 114–22. doi: 10.1074/jbc.M111.273052 . PMC   3249063 . PMID   22039052.
  29. 1 2 Alexacos N, Pang X, Boucher W, Cochrane DE, Sant GR, Theoharides TC (May 1999). "Neurotensin mediates rat bladder mast cell degranulation triggered by acute psychological stress". Urology. 53 (5): 1035–40. doi:10.1016/s0090-4295(98)00627-x. PMID   10223502.
  30. 1 2 3 Rostène W, Brouard A, Dana C, Masuo Y, Agid F, Vial M, Lhiaubet AM, Pelaprat D (1992). "Interaction between neurotensin and dopamine in the brain. Morphofunctional and clinical evidence". Annals of the New York Academy of Sciences. 668: 217–31. doi:10.1111/j.1749-6632.1992.tb27352.x. PMID   1361114. S2CID   41673524.
  31. 1 2 Margeta-Mitrovic M, Grigg JJ, Koyano K, Nakajima Y, Nakajima S (September 1997). "Neurotensin and substance P inhibit low- and high-voltage-activated Ca2+ channels in cultured newborn rat nucleus basalis neurons". Journal of Neurophysiology. 78 (3): 1341–52. doi:10.1152/jn.1997.78.3.1341. PMID   9310425.
  32. Sharma RP, Janicak PG, Bissette G, Nemeroff CB (July 1997). "CSF neurotensin concentrations and antipsychotic treatment in schizophrenia and schizoaffective disorder". The American Journal of Psychiatry. 154 (7): 1019–21. doi:10.1176/ajp.154.7.1019. PMID   9210757.
  33. Ertl G, Bauer B, Becker HH, Rose G (April 1993). "Effects of neurotensin and neuropeptide Y on coronary circulation and myocardial function in dogs". The American Journal of Physiology. 264 (4 Pt 2): H1062-8. doi:10.1152/ajpheart.1993.264.4.H1062. PMID   8476083.
  34. Pang X, Alexacos N, Letourneau R, Seretakis D, Gao W, Boucher W, Cochrane DE, Theoharides TC (October 1998). "A neurotensin receptor antagonist inhibits acute immobilization stress-induced cardiac mast cell degranulation, a corticotropin-releasing hormone-dependent process". The Journal of Pharmacology and Experimental Therapeutics. 287 (1): 307–14. PMID   9765351.
  35. Fredrickson P, Boules M, Lin SC, Richelson E (September 2005). "Neurobiologic basis of nicotine addiction and psychostimulant abuse: a role for neurotensin?". The Psychiatric Clinics of North America. 28 (3): 737–51, 746. doi:10.1016/j.psc.2005.05.001. PMID   16122577.
  36. Luttinger D, Nemeroff CB, Prange AJ (April 1982). "The effects of neuropeptides on discrete-trial conditioned avoidance responding". Brain Research. 237 (1): 183–92. doi:10.1016/0006-8993(82)90566-2. PMID   6176291. S2CID   20135629.
  37. Vincent B, Jiracek J, Noble F, Loog M, Roques B, Dive V, Vincent JP, Checler F (June 1997). "Effect of a novel selective and potent phosphinic peptide inhibitor of endopeptidase 3.4.24.16 on neurotensin-induced analgesia and neuronal inactivation". British Journal of Pharmacology. 121 (4): 705–10. doi:10.1038/sj.bjp.0701182. PMC   1564740 . PMID   9208137.
  38. Denner J, Eschricht M, Lauck M, Semaan M, Schlaermann P, Ryu H, Akyüz L (2013). "Modulation of cytokine release and gene expression by the immunosuppressive domain of gp41 of HIV-1". PLOS ONE. 8 (1): e55199. Bibcode:2013PLoSO...855199D. doi: 10.1371/journal.pone.0055199 . PMC   3559347 . PMID   23383108.

Further reading