Neurosteroidogenesis inhibitor

Last updated

A neurosteroidogenesis inhibitor is a drug that inhibits the production of endogenous neurosteroids. Neurosteroids include the excitatory neurosteroids pregnenolone sulfate, dehydroepiandrosterone (DHEA), and dehydroepiandrosterone sulfate (DHEA-S), and the inhibitory neurosteroids allopregnanolone, tetrahydrodeoxycorticosterone (THDOC), and 3α-androstanediol, among others. [1] By inhibiting the synthesis of endogenous neurosteroids, neurosteroidogenesis inhibitors have effects in the central nervous system.

Inhibitory neurosteroids are biosynthesized from steroid hormones by the action of two enzymes, 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD). [1] These enzymes can be inhibited by 5α-reductase inhibitors such as finasteride and dutasteride and by inhibitors of 3α-HSD such as medroxyprogesterone acetate. [2] [3] [4] Contrarily, 3α-HSD is induced to varying extents by certain selective serotonin reuptake inhibitors (SSRIs), including fluoxetine, fluvoxamine, sertraline, and paroxetine, as well as by certain other antidepressants like venlafaxine and mirtazapine, and these antidepressants have been found to increase inhibitory neurosteroid levels. [1] [5] [6] [7] Some SSRI antidepressants, such as fluoxetine, sertraline, and paroxetine, have been observed to exert this effect at concentrations that are inactive on serotonin reuptake. [8] [9] Inhibition of inhibitory neurosteroid biosynthesis by 5α-reductase inhibitors and 3α-HSD inhibitors has been associated with depression, anxiety, irritability, and sexual dysfunction, [2] [4] [10] whereas enhancement of their biosynthesis has been implicated in the antidepressant and anxiolytic effects of some of the SSRIs. [1]

Inhibitors of cholesterol side-chain cleavage enzyme (P450scc), such as aminoglutethimide and ketoconazole, may block production of both excitatory and inhibitory neurosteroids, while CYP17A1 (17α-hydroxylase/17,20 lyase) inhibitors, such as abiraterone acetate, may mainly block production of excitatory neurosteroids. [11] Antigonadotropins may also have the effect of lowering circulating neurosteroid levels.

The translocator protein (TSPO), also initially described as the peripheral benzodiazepine receptor (PBR), is a mitochondrial protein that is involved in neurosteroid biosynthesis. [12] [13] It is activated by certain benzodiazepines such as diazepam and midazolam, and via this action, inhibitory neurosteroid levels are increased. [1] [12] [13] Selective TSPO activators, such as emapunil, are under investigation for clinical use as possible anxiolytics. [1]

Progesterone, which is the endogenous precursor to the inhibitory neurosteroids 5α-dihydroprogesterone and allopregnanolone, as well as, more distantly, THDOC, [1] [14] when administered exogenously, has been found to behave as a prodrug to these neurosteroids, [15] [16] with clinical signs of their action, such as sedation, readily evident in humans. [17] [18] [19] Exogenous pregnenolone has similarly been found to act as a prodrug of allopregnanolone. [20]

Metyrapone, a reversible inhibitor of the enzyme steroid 11β-hydroxylase, may increase inhibitory neurosteroid levels. [21] Conversely, it may inhibit the production of cortisol-derived excitatory neurosteroids. [11]

Paracetamol (acetaminophen; Tylenol) has been shown to act at SULT2A1 (and potentially at SULT2B1) as an inhibitor of neurosteroidogenesis. [22] Specifically, the production of sulfate-containing neurosteroids, such as DHEA-S and pregnenolone sulfate, were decreased in patients taking paracetamol. [22]

See also

Related Research Articles

<span class="mw-page-title-main">Androsterone</span> Endogenous steroid hormone

Androsterone, or 3α-hydroxy-5α-androstan-17-one, is an endogenous steroid hormone, neurosteroid, and putative pheromone. It is a weak androgen with a potency that is approximately 1/7 that of testosterone. Androsterone is a metabolite of testosterone and dihydrotestosterone (DHT). In addition, it can be converted back into DHT via 3α-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase, bypassing conventional intermediates such as androstanedione and testosterone, and as such, can be considered to be a metabolic intermediate in its own right.

5α-Reductase Enzyme family

5α-Reductases, also known as 3-oxo-5α-steroid 4-dehydrogenases, are enzymes involved in steroid metabolism. They participate in three metabolic pathways: bile acid biosynthesis, androgen and estrogen metabolism. There are three isozymes of 5α-reductase encoded by the genes SRD5A1, SRD5A2, and SRD5A3.

<span class="mw-page-title-main">5α-Reductase inhibitor</span> Class of medications

5α-Reductase inhibitors (5-ARIs), also known as dihydrotestosterone (DHT) blockers, are a class of medications with antiandrogenic effects which are used primarily in the treatment of enlarged prostate and scalp hair loss. They are also sometimes used to treat excess hair growth in women and as a component of hormone therapy for transgender women.

<span class="mw-page-title-main">Neurosteroid</span> Compounds that affect neuronal excitability through modulation of specific ionotropic receptors

Neurosteroids, also known as neuroactive steroids, are endogenous or exogenous steroids that rapidly alter neuronal excitability through interaction with ligand-gated ion channels and other cell surface receptors. The term neurosteroid was coined by the French physiologist Étienne-Émile Baulieu and refers to steroids synthesized in the brain. The term, neuroactive steroid refers to steroids that can be synthesized in the brain, or are synthesized by an endocrine gland, that then reach the brain through the bloodstream and have effects on brain function. The term neuroactive steroids was first coined in 1992 by Steven Paul and Robert Purdy. In addition to their actions on neuronal membrane receptors, some of these steroids may also exert effects on gene expression via nuclear steroid hormone receptors. Neurosteroids have a wide range of potential clinical applications from sedation to treatment of epilepsy and traumatic brain injury. Ganaxolone, a synthetic analog of the endogenous neurosteroid allopregnanolone, is under investigation for the treatment of epilepsy.

3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerase (3β-HSD) is an enzyme that catalyzes the biosynthesis of the steroid progesterone from pregnenolone, 17α-hydroxyprogesterone from 17α-hydroxypregnenolone, and androstenedione from dehydroepiandrosterone (DHEA) in the adrenal gland. It is the only enzyme in the adrenal pathway of corticosteroid synthesis that is not a member of the cytochrome P450 family. It is also present in other steroid-producing tissues, including the ovary, testis and placenta. In humans, there are two 3β-HSD isozymes encoded by the HSD3B1 and HSD3B2 genes.

<span class="mw-page-title-main">Allopregnanolone</span> Endogenous inhibitory neurosteroid

Allopregnanolone is a naturally occurring neurosteroid which is made in the body from the hormone progesterone. As a medication, allopregnanolone is referred to as brexanolone, sold under the brand name Zulresso, and used to treat postpartum depression. It is given by injection into a vein.

<span class="mw-page-title-main">AKR1C3</span> Protein-coding gene in the species Homo sapiens

Aldo-keto reductase family 1 member C3 (AKR1C3), also known as 17β-hydroxysteroid dehydrogenase type 5 or 3α-hydroxysteroid dehydrogenase type 2 (3α-HSD2) is a steroidogenic enzyme that in humans is encoded by the AKR1C3 gene.

<span class="mw-page-title-main">AKR1C4</span> Protein-coding gene in the species Homo sapiens

Aldo-keto reductase family 1 member C4, also known as 3α-Hydroxysteroid dehydrogenase type 1 (3α-HSD1), is an enzyme that in humans is encoded by the AKR1C4 gene. It is known to be necessary for the synthesis of the endogenous neurosteroids allopregnanolone, tetrahydrodeoxycorticosterone, and 3α-androstanediol. It is also known to catalyze the reversible conversion of 3α-androstanediol (5α-androstane-3α,17β-diol) to dihydrotestosterone and vice versa.

<span class="mw-page-title-main">Pregnanolone</span> Chemical compound

Pregnanolone, also known as eltanolone, is an endogenous inhibitory neurosteroid which is produced in the body from progesterone. It is closely related to allopregnanolone, which has similar properties.

<span class="mw-page-title-main">5α-Dihydroprogesterone</span> Chemical compound

5α-Dihydroprogesterone is an endogenous progestogen and neurosteroid that is synthesized from progesterone. It is also an intermediate in the synthesis of allopregnanolone and isopregnanolone from progesterone.

GABA<sub>A</sub> receptor positive allosteric modulator GABAA receptor positive modulators

In pharmacology, GABAA receptor positive allosteric modulators, also known as GABAkines or GABAA receptor potentiators, are positive allosteric modulator (PAM) molecules that increase the activity of the GABAA receptor protein in the vertebrate central nervous system.

<span class="mw-page-title-main">Isopregnanolone</span> Chemical compound

Isopregnanolone, also known as isoallopregnanolone and epiallopregnanolone, as well as sepranolone, and as 3β-hydroxy-5α-pregnan-20-one or 3β,5α-tetrahydroprogesterone (3β,5α-THP), is an endogenous neurosteroid and a natural 3β-epimer of allopregnanolone. It has been reported to act as a subunit-selective negative allosteric modulator of the GABAA receptor, and antagonizes in animals and humans some but not all of the GABAA receptor-mediated effects of allopregnanolone, such as anesthesia, sedation, and reduced saccadic eye movements, but not learning impairment. Isopregnanolone has no hormonal effects and appears to have no effect on the GABAA receptor by itself; it selectively antagonizes allopregnanolone and does not affect the effects of other types of GABAA receptor positive allosteric modulators such as benzodiazepines or barbiturates.

<span class="mw-page-title-main">5β-Dihydroprogesterone</span> Chemical compound

5β-Dihydroprogesterone is an endogenous neurosteroid and an intermediate in the biosynthesis of pregnanolone and epipregnanolone from progesterone. It is synthesized from progesterone by the enzyme 5β-reductase.

<span class="mw-page-title-main">3α-Dihydroprogesterone</span> Chemical compound

3α-Dihydroprogesterone (3α-DHP), also known as 3α-hydroxyprogesterone, as well as pregn-4-en-3α-ol-20-one, is an endogenous neurosteroid. It is biosynthesized by 3α-hydroxysteroid dehydrogenase from progesterone. 3α-DHP has been found to act as a positive allosteric modulator of the GABAA receptor and is described as being as active as allopregnanolone in regard to this action. In accordance, it has anxiolytic effects in animals. 3α-DHP has also been found to inhibit the secretion of follicle-stimulating hormone (FSH) from the rat pituitary gland, demonstrating possible antigonadotropic properties. Unlike the case of most other inhibitory neurosteroids, 3α-DHP production is not blocked by 5α-reductase inhibitors like finasteride. No data were available on the progestogenic activity of 3α-DHP as of 1977. Levels of 5α-DHP have been quantified.

<span class="mw-page-title-main">3β-Dihydroprogesterone</span> Chemical compound

3β-Dihydroprogesterone (3β-DHP), also known as 3β-hydroxyprogesterone, or pregn-4-en-3β-ol-20-one, is an endogenous steroid. It is biosynthesized by 3β-hydroxysteroid dehydrogenase from progesterone. Unlike 3α-dihydroprogesterone (3α-DHP), 3β-DHP does not act as a positive allosteric modulator of the GABAA receptor, which is in accordance with the fact that other 3β-hydroxylated progesterone metabolites such as isopregnanolone and epipregnanolone similarly do not act as potentiators of this receptor and instead inhibit it as well as reverse the effects of potentiators like allopregnanolone. 3β-DHP has been reported to possess about the same potency as progesterone in a bioassay of progestogenic activity, whereas 3α-DHP was not assessed.

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.

<span class="mw-page-title-main">Allopregnanediol</span> Chemical compound

Allopregnanediol, or 5α-pregnane-3α,20α-diol, is an endogenous metabolite of progesterone and allopregnanolone and an isomer of pregnanediol (5β-pregnan-3α,20α-diol). It has been found to act like a partial agonist of an allosteric site of the GABA receptor and hence might play a biological role as a neurosteroid. It has also been found to act as an agonist of the human pregnane X receptor, albeit with an EC50 that is more than an order of magnitude lower than that of other endogenous pregnanes like pregnenolone, pregnanediol, allopregnanedione, and allopregnanolone.

An androgen synthesis inhibitor is a type of drug which inhibits the enzymatic synthesis of androgens, such as testosterone and dihydrotestosterone (DHT). They include:

3α-Hydroxysteroid dehydrogenase (3α-HSD) is an enzyme (1.1.1.50) that plays a role in the metabolism of steroids and non-steroidal compounds in humans and other species, such as bacteria, fungi, plants, and so on. This enzyme catalyzes the chemical reaction of conversion of 3-ketosteroids into 3α-hydroxysteroids. The enzyme has various protein isoforms (isozymes).

References

  1. 1 2 3 4 5 6 7 Reddy DS (2010). "Neurosteroids". Sex Differences in the Human Brain, their Underpinnings and Implications. Progress in Brain Research. Vol. 186. pp. 113–137. doi:10.1016/B978-0-444-53630-3.00008-7. ISBN   978-0-444-53630-3. ISSN   0079-6123. PMC   3139029 . PMID   21094889.
  2. 1 2 Traish AM, Mulgaonkar A, Giordano N (June 2014). "The dark side of 5α-reductase inhibitors' therapy: sexual dysfunction, high Gleason grade prostate cancer and depression". Korean J Urol. 55 (6): 367–79. doi:10.4111/kju.2014.55.6.367. PMC   4064044 . PMID   24955220.
  3. Meyer L, Venard C, Schaeffer V, Patte-Mensah C, Mensah-Nyagan AG (April 2008). "The biological activity of 3alpha-hydroxysteroid oxido-reductase in the spinal cord regulates thermal and mechanical pain thresholds after sciatic nerve injury". Neurobiol. Dis. 30 (1): 30–41. doi:10.1016/j.nbd.2007.12.001. PMID   18291663. S2CID   5830825.
  4. 1 2 Pazol K, Wilson ME, Wallen K (June 2004). "Medroxyprogesterone acetate antagonizes the effects of estrogen treatment on social and sexual behavior in female macaques". J. Clin. Endocrinol. Metab. 89 (6): 2998–3006. doi:10.1210/jc.2003-032086. PMC   1440328 . PMID   15181090.
  5. Griffin LD, Mellon SH (November 1999). "Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes". Proc. Natl. Acad. Sci. U.S.A. 96 (23): 13512–7. Bibcode:1999PNAS...9613512G. doi: 10.1073/pnas.96.23.13512 . PMC   23979 . PMID   10557352.
  6. Pinna G (September 2010). "In a mouse model relevant for post-traumatic stress disorder, selective brain steroidogenic stimulants (SBSS) improve behavioral deficits by normalizing allopregnanolone biosynthesis". Behav Pharmacol. 21 (5–6): 438–50. doi:10.1097/FBP.0b013e32833d8ba0. PMC   2942072 . PMID   20716970.
  7. Schüle C, Romeo E, Uzunov DP, Eser D, di Michele F, Baghai TC, Pasini A, Schwarz M, Kempter H, Rupprecht R (March 2006). "Influence of mirtazapine on plasma concentrations of neuroactive steroids in major depression and on 3alpha-hydroxysteroid dehydrogenase activity". Mol. Psychiatry. 11 (3): 261–72. doi:10.1038/sj.mp.4001782. PMID   16344854. S2CID   21473462.
  8. Griffin LD, Mellon SH (1999-11-09). "Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes". Proceedings of the National Academy of Sciences of the United States of America. 96 (23): 13512–13517. doi: 10.1073/pnas.96.23.13512 . ISSN   0027-8424. PMC   23979 . PMID   10557352.
  9. Pinna G, Costa E, Guidotti A (June 2006). "Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake". Psychopharmacology. 186 (3): 362–372. doi:10.1007/s00213-005-0213-2. ISSN   0033-3158. PMID   16432684.
  10. Civic D, Scholes D, Ichikawa L, et al. (June 2000). "Depressive symptoms in users and non-users of depot medroxyprogesterone acetate". Contraception. 61 (6): 385–90. doi:10.1016/s0010-7824(00)00122-0. PMID   10958882.
  11. 1 2 Tvrdeić A, Poljak L (2016). "Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs?". Endocrine Oncology and Metabolism. 2 (1): 60–71. doi: 10.21040/eom/2016.2.7 (inactive 1 November 2024). ISSN   1849-8922.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  12. 1 2 Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (August 2006). "Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function". Trends Pharmacol. Sci. 27 (8): 402–9. doi:10.1016/j.tips.2006.06.005. PMID   16822554.
  13. 1 2 Dhir A, Rogawski MA (Apr 2012). "Role of neurosteroids in the anticonvulsant activity of midazolam". British Journal of Pharmacology. 165 (8): 2684–91. doi:10.1111/j.1476-5381.2011.01733.x. PMC   3423249 . PMID   22014182.
  14. Paul SM, Purdy RH (1992). "Neuroactive steroids". FASEB J. 6 (6): 2311–22. doi: 10.1096/fasebj.6.6.1347506 . PMID   1347506. S2CID   221753076.
  15. Rebekah Wang-Cheng, Joan M. Neuner, Vanessa M. Barnabei (2007). Menopause. ACP Press. pp. 97–. ISBN   978-1-930513-83-9.
  16. Niels Bergemann, Anita Riecher-Rössler (27 December 2005). Estrogen Effects in Psychiatric Disorders. Springer Science & Business Media. pp. 179–. ISBN   978-3-211-27063-9.
  17. Söderpalm AH, Lindsey S, Purdy RH, Hauger R, Wit de H (2004). "Administration of progesterone produces mild sedative-like effects in men and women". Psychoneuroendocrinology. 29 (3): 339–54. doi:10.1016/s0306-4530(03)00033-7. PMID   14644065. S2CID   21796848.
  18. de Wit H, Schmitt L, Purdy R, Hauger R (2001). "Effects of acute progesterone administration in healthy postmenopausal women and normally-cycling women". Psychoneuroendocrinology. 26 (7): 697–710. doi:10.1016/s0306-4530(01)00024-5. PMID   11500251. S2CID   20611661.
  19. van Broekhoven F, Bäckström T, Verkes RJ (2006). "Oral progesterone decreases saccadic eye velocity and increases sedation in women". Psychoneuroendocrinology. 31 (10): 1190–9. doi:10.1016/j.psyneuen.2006.08.007. PMID   17034954. S2CID   40466952.
  20. Sripada RK, Marx CE, King AP, Rampton JC, Ho SS, Liberzon I (2013). "Allopregnanolone elevations following pregnenolone administration are associated with enhanced activation of emotion regulation neurocircuits". Biol. Psychiatry. 73 (11): 1045–53. doi:10.1016/j.biopsych.2012.12.008. PMC   3648625 . PMID   23348009.
  21. Schmoutz CD, Guerin GF, Goeders NE (2014). "Role of GABA-active neurosteroids in the efficacy of metyrapone against cocaine addiction". Behav. Brain Res. 271: 269–76. doi:10.1016/j.bbr.2014.06.032. PMID   24959859. S2CID   37159095.
  22. 1 2 Cohen IV, Cirulli ET, Mitchell MW, Jonsson TJ, Yu J, Shah N, Spector TD, Guo L, Venter JC, Telenti A (2018). "Acetaminophen (Paracetamol) Use Modifies the Sulfation of Sex Hormones". eBioMedicine. 28: 316–323. doi:10.1016/j.ebiom.2018.01.033. PMC   5835573 . PMID   29398597.