Novosphingobium pentaromativorans

Last updated

Novosphingobium pentaromativorans
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Alphaproteobacteria
Order: Sphingomonadales
Family: Erythrobacteraceae
Genus: Novosphingobium
Species:
N. pentaromativorans
Binomial name
Novosphingobium pentaromativorans
Sohn et al. 2004

Novosphingobium pentaromativorans is a species of high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium. It is Gram-negative, yellow-pigmented and halophilic [1] . The genome of the type strain US6-1T (=KCTC 10454T =JCM 12182T) has been sequenced, revealing the presence of two plasmids [2] [1] . The larger of these plasmids contains the majority of the aromatic-hydrocarbon degrading genes and has been implicated in studies to play an important role in degrading bicyclic aromatic compounds [2] [3] .This ability to degrade polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs suggests N. pentaromativorans may be used for bioremediation [4] [5] .  

Contents

Characteristics

Novosphingobium pentaromativorans is a gram-negative rod-shaped bacteria that forms colonies with a yellow pigment. It is a moderately halophilic, non-motile, nitrate reductase-positive, facultative anaerobe. N. pentaromativorans was first isolated from estuarine sediments in Ulsan Bay, Republic of Korea in 2004 [1] . It was originally cultured on marine agar and tryptic soy agar and has optimal growth at 30°C. Additionally, ideal growth is observed with media containing a NaCl concentration of 2.5% and a pH of 6.5 [1] . Importantly, N. pentaromativorans possesses the ability to degrade high molecular weight (HMW) PAHs as well as alkylated PAHs such as 1-methylphenanthrene [1] [5] .

N. pentaromativorans US6-1 was sequenced in 2012, resulting in a genome of 5,096,413 bp with 63.1% GC content and the identification of two plasmids, designated pLA1 and pLA2. The larger plasmid, pLA1 was 188,476 bp in length with 62.6% GC content. The secondary plasmid, pLA2, is composed of 60,085 bp and has 60.2% GC content [2] . The genome of N. pentaromativorans US6-1 showed homology to the genome of N. aromaticivorans DSM 12444, another species belonging to the Novosphigobium genus, which can degrade mono- and bi-aromatic hydrocarbons [2] [6] . Additionally, the conjugative region of pLA1 showed homology to N. aromaticivorans plasmid pNL1 and to the plasmid pCAR3 of Sphingomonas sp. strain KA1 [2] .

Polycyclic aromatic hydrocarbon degradation

One of the most studied qualities of N. pentaromativorans is its ability to degrade high molecular weight (HMW) polycyclic aromatic hydrocarbons (PAHs) [1] . HMW PAHs are a toxic environmental pollutant that are often resistant to microbial degradation. Because of this, organisms that are capable of degrading these HMW PAHs are of high interest as potential candidates for bioremediation of PAH-contaminated environments [4] [7] . Further, N. pentaromativorans has been used to study the proteins used in the degradation of PAHs, resulting in the identification of multiple enzymes involved in the process including 4-hydroxybenzoate 3-monooxygenase, salicylaldehyde dehydrogenase, and the PAH ring-hydroxylating dioxygenase alpha subunit [8] .

N. pentaromativorans is capable of degrading HMW PAHs with two to five aromatic rings [1] . It does this using the enzyme ring-hydroxylating dioxygenase and through further processing in either the o-phthalate pathway or salicylate pathway. Following these pathways, products are used in the tricarboxylic acid cycle and mineralized to CO2 [8] . Several of the genes used in HMW PAH degradation are found on the chromosomal genome of N. pentaromativorans, but the PAH catabolic region primarily responsible for PAH degradation are located on pLA1 [2] [3] .

Related Research Articles

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

<span class="mw-page-title-main">Mycoremediation</span> Process of using fungi to degrade or sequester contaminants in the environment

Mycoremediation is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been proven to be a cheap, effective and environmentally sound way for removing a wide array of contaminants from damaged environments or wastewater. These contaminants include heavy metals, organic pollutants, textile dyes, leather tanning chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products, pesticides and herbicides in land, fresh water, and marine environments.

Pseudomonas alcaligenes is a Gram-negative aerobic bacterium used for bioremediation purposes of oil pollution, pesticide substances, and certain chemical substances, as it can degrade polycyclic aromatic hydrocarbons. It can be a human pathogen, but occurrences are very rare. Based on 16S rRNA analysis, P. alcaligenes has been placed in the P. aeruginosa group.

<i>Rhodotorula</i> Genus of fungi

Rhodotorula is a genus of fungi in the class Microbotryomycetes. Most species are known in their yeast states which produce orange to red colonies when grown on Sabouraud's dextrose agar (SDA). The colour is the result of pigments that the yeast creates to block out certain wavelengths of light (620–750 nm) that would otherwise be damaging to the cell. Hyphal states, formerly placed in the genus Rhodosporidium, give rise to teliospores from which laterally septate basidia emerge, producing sessile basidiospores. Species occur worldwide and can be isolated from air, water, soil, and other substrates.

<i>Pseudomonas stutzeri</i> Species of bacterium

Pseudomonas stutzeri is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in many different environments due to its various characteristics and metabolic capabilities. P. stutzeri is an opportunistic pathogen in clinical settings, although infections are rare. Based on 16S rRNA analysis, this bacterium has been placed in the P. stutzeri group, to which it lends its name.

<i>Delftia</i> Genus of bacteria

Delftia is a genus of Gram-negative bacteria that was first isolated from soil in Delft, Netherlands. The species is named after both the city, and in honor of pioneering research in the field of bacteriology that occurred in Delft. Cells in the genus Delftia are rod shaped and straight or slightly curved. Cells occur singly or in pairs, are 0.4–0.8ɥM wide and 2.5–4.1 μm long. Delftia species are motile by flagella, nonsporulating, and chemo-organotrophic.

<i>Bjerkandera adusta</i> Species of fungus

Bjerkandera adusta, commonly known as the smoky polypore or smoky bracket, is a species of fungus in the family Meruliaceae. It is a plant pathogen that causes white rot in live trees, but most commonly appears on dead wood. It was first described scientifically as Boletus adustus by Carl Ludwig Willdenow in 1787. The genome sequence of Bjerkandera adusta was reported in 2013. The species is inedible.

Microbial biodegradation is the use of bioremediation and biotransformation methods to harness the naturally occurring ability of microbial xenobiotic metabolism to degrade, transform or accumulate environmental pollutants, including hydrocarbons, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), heterocyclic compounds, pharmaceutical substances, radionuclides and metals.

Novosphingobium is a genus of Gram-negative bacteria that includes N. taihuense, which can degrade aromatic compounds such as phenol, aniline, nitrobenzene and phenanthrene. The species N. aromativorans, which was first found in Ulsan Bay, similarly degrades aromatic molecules of two to five rings.

Alcanivorax borkumensis is an alkane-degrading marine bacterium which naturally propagates and becomes predominant in crude-oil-containing seawater when nitrogen and phosphorus nutrients are supplemented.

Delftia lacustris is a Gram-negative, nonfermentative, motile, rod-shaped bacterium from the family Comamonadaceae, which was isolated from mesotrophic lake water in Denmark. It has the ability to degrade peptidoglycan through chitinase and lysozyme activity.

Sphingomonas yanoikuyae is a short rod-shaped, strictly aerobic, Gram-negative, non-motile, non-spore-forming, chemoheterotrophic species of bacteria that is yellow or off-white in color. Its type strain is JCM 7371. It is notable for degrading a variety of aromatic compounds including biphenyl, naphthalene, phenanthrene, toluene, m-, and p-xylene. S. yanoikuyae was discovered by Brian Goodman on the southern coast of Papua New Guinea. However, Sphingomonas have a wide distribution across freshwater, seawater, and terrestrial habitats. This is due to the bacteria's ability to grow and survive under low-nutrient conditions as it can utilize a broad range of organic compounds.

Rhodococcus erythropolis is an aerobic Gram-positive bacterium species in the genus Rhodococcus. The name Rhodococcus erythropolis is derived from its morphogenetic cycle from branching to rod and to coccus morphology, which explains the series of morphological changes this bacterium undergoing during growth and development processes. These bacterium are found in red and orange colonies when observed this explains the species name erythropolis which means "red city" in Greek.

Sphingomonas formosensis is a Gram-negative and short rod-shaped bacteria from the genus of Sphingomonas which has been isolated from agricultural soil in Kaohsiung County in Taiwan. Sphingomonas formosensis has the ability to degrade polycyclic aromatic hydrocarbon compounds.

Cellulosimicrobium cellulans is a Gram-positive bacterium from the genus of Cellulosimicrobium. Cellulosimicrobium cellulans can cause rare opportunistic infections. The strain EB-8-4 of this species can be used for stereoselective allylic hydroxylation of D-limonene to (+)-trans-carveol.

Novosphingobium aromaticivorans is a species of bacteria. It is an aromatic compound-degrading bacteria, it is gram-negative, non-spore-forming, non-motile and rod-shaped. It is found in deep-terrestrial-subsurface sediments.

Bioremediation of petroleum contaminated environments is a process in which the biological pathways within microorganisms or plants are used to degrade or sequester toxic hydrocarbons, heavy metals, and other volatile organic compounds found within fossil fuels. Oil spills happen frequently at varying degrees along with all aspects of the petroleum supply chain, presenting a complex array of issues for both environmental and public health. While traditional cleanup methods such as chemical or manual containment and removal often result in rapid results, bioremediation is less labor-intensive, expensive, and averts chemical or mechanical damage. The efficiency and effectiveness of bioremediation efforts are based on maintaining ideal conditions, such as pH, RED-OX potential, temperature, moisture, oxygen abundance, nutrient availability, soil composition, and pollutant structure, for the desired organism or biological pathway to facilitate reactions. Three main types of bioremediation used for petroleum spills include microbial remediation, phytoremediation, and mycoremediation. Bioremediation has been implemented in various notable oil spills including the 1989 Exxon Valdez incident where the application of fertilizer on affected shoreline increased rates of biodegradation.

Gordonia sp. nov. Q8 is a bacterium in the phylum of Actinomycetota. It was discovered in 2017 as one of eighteen new species isolated from the Jiangsu Wei5 oilfield in East China with the potential for bioremediation. Strain Q8 is rod-shaped and gram-positive with dimensions 1.0–4.0 μm × 0.5–1.2 μm and an optimal growth temperature of 40 °C. Phylogenetically, it is most closely related to Gordonia paraffinivorans and Gordonia alkaliphila, both of which are known bioremediators. Q8 was assigned as a novel species based on a <70% ratio of DNA homology with other Gordonia bacteria.

Aestuariicella is a rod-shaped, Gram-negative, and strictly aerobic genus of bacteria from the order Alteromonadales with one known species. Aestuariicella hydrocarbonica was first isolated in 2015 from oil spill contaminated tidal flat sediments from the Dangjin bay in Korea. Due to the recent nature of its discovery, its taxonomic classification has not yet been accepted. Future research into its evolutionary history and genome may change the naming of this organism.

Hydrocarbonoclastic bacteria are a heterogeneous group of prokaryotes which can degrade and utilize hydrocarbon compounds as source of carbon and energy. Despite being present in most of environments around the world, several of these specialized bacteria live in the sea and have been isolated from polluted seawater.

References

  1. 1 2 3 4 5 6 7 Sohn, Jae Hak; Kwon, Kae Kyoung; Kang, Ji-Hyun; Jung, Hong-Bae; Kim, Sang-Jin (2004). "Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment". International Journal of Systematic and Evolutionary Microbiology. 54 (5): 1483–1487. doi:10.1099/ijs.0.02945-0. ISSN   1466-5034. PMID   15388699.
  2. 1 2 3 4 5 6 Luo, Yuan Rong; Kang, Sung Gyun; Kim, Sang-Jin; Kim, Mi-Ree; Li, Nan; Lee, Jung-Hyun; Kwon, Kae Kyoung (February 2012). "Genome Sequence of Benzo(a)pyrene-Degrading Bacterium Novosphingobium pentaromativorans US6-1". Journal of Bacteriology. 194 (4): 907. doi:10.1128/JB.06476-11. ISSN   0021-9193. PMC   3272951 . PMID   22275104.
  3. 1 2 Yun, Sung Ho; Choi, Chi-Won; Lee, Sang-Yeop; Lee, Yeol Gyun; Kwon, Joseph; Leem, Sun Hee; Chung, Young Ho; Kahng, Hyung-Yeel; Kim, Sang Jin; Kwon, Kae Kyoung; Kim, Seung Il (2014-03-07). "Proteomic Characterization of Plasmid pLA1 for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Marine Bacterium, Novosphingobium pentaromativorans US6-1". PLOS ONE. 9 (3): e90812. Bibcode:2014PLoSO...990812Y. doi: 10.1371/journal.pone.0090812 . ISSN   1932-6203. PMC   3946609 . PMID   24608660.
  4. 1 2 Juhasz, Albert L; Naidu, Ravendra (2000-01-01). "Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene". International Biodeterioration & Biodegradation. 45 (1): 57–88. Bibcode:2000IBiBi..45...57J. doi:10.1016/S0964-8305(00)00052-4. ISSN   0964-8305.
  5. 1 2 Sha, Sha; Zhong, Jianan; Chen, Baowei; Lin, Li; Luan, Tiangang (2017). "Novosphingobium guangzhouense sp. nov., with the ability to degrade 1-methylphenanthrene". International Journal of Systematic and Evolutionary Microbiology. 67 (2): 489–497. doi:10.1099/ijsem.0.001669. ISSN   1466-5034. PMID   27902280.
  6. Romine, Margaret F.; Stillwell, Lisa C.; Wong, Kwong-Kwok; Thurston, Sarah J.; Sisk, Ellen C.; Sensen, Christoph; Gaasterland, Terry; Fredrickson, Jim K.; Saffer, Jeffrey D. (March 1999). "Complete Sequence of a 184-Kilobase Catabolic Plasmid from Sphingomonas aromaticivorans F199". Journal of Bacteriology. 181 (5): 1585–1602. doi:10.1128/JB.181.5.1585-1602.1999. ISSN   0021-9193. PMC   93550 . PMID   10049392.
  7. Kanaly, Robert A.; Harayama, Shigeaki (March 2010). "Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria". Microbial Biotechnology. 3 (2): 136–164. doi:10.1111/j.1751-7915.2009.00130.x. ISSN   1751-7915. PMC   3836582 . PMID   21255317.
  8. 1 2 Lyu, Yihua; Zheng, Wei; Zheng, Tianling; Tian, Yun (2014-07-09). "Biodegradation of Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromativorans US6-1". PLOS ONE. 9 (7): e101438. Bibcode:2014PLoSO...9j1438L. doi: 10.1371/journal.pone.0101438 . ISSN   1932-6203. PMC   4090153 . PMID   25007154.

Further reading