Obstacle problem

Last updated

The obstacle problem is a classic motivating example in the mathematical study of variational inequalities and free boundary problems. The problem is to find the equilibrium position of an elastic membrane whose boundary is held fixed, and which is constrained to lie above a given obstacle. It is deeply related to the study of minimal surfaces and the capacity of a set in potential theory as well. Applications include the study of fluid filtration in porous media, constrained heating, elasto-plasticity, optimal control, and financial mathematics. [1]

Contents

The mathematical formulation of the problem is to seek minimizers of the Dirichlet energy functional,

in some domains where the functions represent the vertical displacement of the membrane. In addition to satisfying Dirichlet boundary conditions corresponding to the fixed boundary of the membrane, the functions are in addition constrained to be greater than some given obstacle function . The solution breaks down into a region where the solution is equal to the obstacle function, known as the contact set, and a region where the solution is above the obstacle. The interface between the two regions is the free boundary.

In general, the solution is continuous and possesses Lipschitz continuous first derivatives, but that the solution is generally discontinuous in the second derivatives across the free boundary. The free boundary is characterized as a Hölder continuous surface except at certain singular points, which reside on a smooth manifold.

Historical note

Qualche tempo dopo Stampacchia, partendo sempre dalla sua disequazione variazionale, aperse un nuovo campo di ricerche che si rivelò importante e fecondo. Si tratta di quello che oggi è chiamato il problema dell'ostacolo. [2]

Sandro Faedo, (Faedo 1986, p. 107)

Motivating problems

Shape of a membrane above an obstacle

The obstacle problem arises when one considers the shape taken by a soap film in a domain whose boundary position is fixed (see Plateau's problem), with the added constraint that the membrane is constrained to lie above some obstacle in the interior of the domain as well. [3] In this case, the energy functional to be minimized is the surface area integral, or

This problem can be linearized in the case of small perturbations by expanding the energy functional in terms of its Taylor series and taking the first term only, in which case the energy to be minimized is the standard Dirichlet energy

Optimal stopping

The obstacle problem also arises in control theory, specifically the question of finding the optimal stopping time for a stochastic process with payoff function .

In the simple case wherein the process is Brownian motion, and the process is forced to stop upon exiting the domain, the solution of the obstacle problem can be characterized as the expected value of the payoff, starting the process at , if the optimal stopping strategy is followed. The stopping criterion is simply that one should stop upon reaching the contact set. [4]

Formal statement

Suppose the following data is given:

  1. an open bounded domain with smooth boundary
  2. a smooth function on (the boundary of )
  3. a smooth function defined on all of such that , i.e., the restriction of to the boundary of (its trace) is less than .

Then consider the set

which is a closed convex subset of the Sobolev space of square integrable functions with domain whose weak first derivatives is square integrable, containing those functions with the desired boundary conditions and whose values above the obstacle's. A solution to the obstacle problem is a function which minimizes the energy integral

over all functions belonging to ; in symbols

The existence and uniqueness of such a minimizer is assured by considerations of Hilbert space theory. [3] [5]

Alternative formulations

Variational inequality

The obstacle problem can be reformulated as a standard problem in the theory of variational inequalities on Hilbert spaces. Seeking the energy minimizer in the set of suitable functions is equivalent to seeking

such that

where is the ordinary scalar product in the finite-dimensional real vector space . This is a special case of the more general form for variational inequalities on Hilbert spaces, whose solutions are functions in some closed convex subset of the overall space, such that

for coercive, real-valued, bounded bilinear forms and bounded linear functionals on . [6]

Least superharmonic function

A variational argument shows that, away from the contact set, the solution to the obstacle problem is harmonic. A similar argument which restricts itself to variations that are positive shows that the solution is superharmonic on the contact set. Together, the two arguments imply that the solution is a superharmonic function. [1]

In fact, an application of the maximum principle then shows that the solution to the obstacle problem is the least superharmonic function in the set of admissible functions. [6]

Regularity properties

Solution of a one-dimensional obstacle problem. Notice how the solution stays superharmonic (concave down in 1-D), and matches derivatives with the obstacle (which is the
C
1
,
1
{\displaystyle C^{1,1}}
condition) Ondulationamelioree.jpg
Solution of a one-dimensional obstacle problem. Notice how the solution stays superharmonic (concave down in 1-D), and matches derivatives with the obstacle (which is the condition)

Optimal regularity

The solution to the obstacle problem has regularity, or bounded second derivatives, when the obstacle itself has these properties. [7] More precisely, the solution's modulus of continuity and the modulus of continuity for its derivative are related to those of the obstacle.

  1. If the obstacle has modulus of continuity , that is to say that , then the solution has modulus of continuity given by , where the constant depends only on the domain and not the obstacle.
  2. If the obstacle's first derivative has modulus of continuity , then the solution's first derivative has modulus of continuity given by , where the constant again depends only on the domain. [8]

Level surfaces and the free boundary

Subject to a degeneracy condition, level sets of the difference between the solution and the obstacle, for are surfaces. The free boundary, which is the boundary of the set where the solution meets the obstacle, is also except on a set of singular points, which are themselves either isolated or locally contained on a manifold. [9]

Generalizations

The theory of the obstacle problem is extended to other divergence form uniformly elliptic operators, [6] and their associated energy functionals. It can be generalized to degenerate elliptic operators as well.

The double obstacle problem, where the function is constrained to lie above one obstacle function and below another, is also of interest.

The Signorini problem is a variant of the obstacle problem, where the energy functional is minimized subject to a constraint which only lives on a surface of one lesser dimension, which includes the boundary obstacle problem, where the constraint operates on the boundary of the domain.

The parabolic, time-dependent cases of the obstacle problem and its variants are also objects of study.

See also

Notes

  1. 1 2 See Caffarelli 1998 , p. 384.
  2. "Some time after Stampacchia, starting again from his variational inequality, opened a new field of research, which revealed itself as important and fruitful. It is the now called obstacle problem" (English translation). The Italic type emphasis is due to the author himself.
  3. 1 2 See Caffarelli 1998 , p. 383.
  4. See the lecture notes by Evans , pp. 110–114).
  5. See Kinderlehrer & Stampacchia 1980 , pp. 40–41.
  6. 1 2 3 See Kinderlehrer & Stampacchia 1980 , pp. 23–49.
  7. See Frehse 1972.
  8. See Caffarelli 1998 , p. 386.
  9. See Caffarelli 1998 , pp. 394 and 397.

Historical references

Related Research Articles

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in many parts of both pure and applied mathematics.

The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

<span class="mw-page-title-main">Green's function</span> Impulse response of an inhomogeneous linear differential operator

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

In mathematics, and particularly in potential theory, Dirichlet's principle is the assumption that the minimizer of a certain energy functional is a solution to Poisson's equation.

In mathematics, a variational inequality is an inequality involving a functional, which has to be solved for all possible values of a given variable, belonging usually to a convex set. The mathematical theory of variational inequalities was initially developed to deal with equilibrium problems, precisely the Signorini problem: in that model problem, the functional involved was obtained as the first variation of the involved potential energy. Therefore, it has a variational origin, recalled by the name of the general abstract problem. The applicability of the theory has since been expanded to include problems from economics, finance, optimization and game theory.

In mathematics, the viscosity solution concept was introduced in the early 1980s by Pierre-Louis Lions and Michael G. Crandall as a generalization of the classical concept of what is meant by a 'solution' to a partial differential equation (PDE). It has been found that the viscosity solution is the natural solution concept to use in many applications of PDE's, including for example first order equations arising in dynamic programming, differential games or front evolution problems, as well as second-order equations such as the ones arising in stochastic optimal control or stochastic differential games.

<span class="mw-page-title-main">Navier–Stokes existence and smoothness</span> Millennium Prize Problem

The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

<span class="mw-page-title-main">Elliptic boundary value problem</span>

In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the steady state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on.

The topological derivative is, conceptually, a derivative of a shape functional with respect to infinitesimal changes in its topology, such as adding an infinitesimal hole or crack. When used in higher dimensions than one, the term topological gradient is also used to name the first-order term of the topological asymptotic expansion, dealing only with infinitesimal singular domain perturbations. It has applications in shape optimization, topology optimization, image processing and mechanical modeling.

In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure, which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge. More precisely, it is the capacitance of the set: the total charge a set can hold while maintaining a given potential energy. The potential energy is computed with respect to an idealized ground at infinity for the harmonic or Newtonian capacity, and with respect to a surface for the condenser capacity.

In linear elasticity, the equations describing the deformation of an elastic body subject only to surface forces on the boundary are the equilibrium equation:

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. Computers are usually used to perform the calculations required. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems.

In mathematics, the Dirichlet eigenvalues are the fundamental modes of vibration of an idealized drum with a given shape. The problem of whether one can hear the shape of a drum is: given the Dirichlet eigenvalues, what features of the shape of the drum can one deduce. Here a "drum" is thought of as an elastic membrane Ω, which is represented as a planar domain whose boundary is fixed. The Dirichlet eigenvalues are found by solving the following problem for an unknown function u ≠ 0 and eigenvalue λ

In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of a solution, direct methods may be used to compute the solution to desired accuracy.

In mathematics, a free boundary problem is a partial differential equation to be solved for both an unknown function and an unknown domain . The segment of the boundary of which is not known at the outset of the problem is the free boundary.

In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.

References