Oil pollution toxicity to marine fish

Last updated

Oil pollution toxicity to marine fish has been observed from oil spills such as the Exxon Valdez disaster, and from nonpoint sources, such as surface runoff, which is the largest source of oil pollution in marine waters.

Contents

Crude oil entering waterways from spills or runoff contain polycyclic aromatic hydrocarbons (PAHs), the most toxic components of oil. The route of PAH uptake into fish depends on many environmental factors and the properties of the PAH. The common routes are ingestion, ventilation of the gills, and dermal uptake. Fish exposed to these PAHs exhibit an array of toxic effects including genetic damage, morphological deformities, altered growth and development, decreased body size, inhibited swimming abilities and mortality. [1] [2] [3] The morphological deformities of PAH exposure, such as fin and jaw malformations, result in significantly reduced survival in fish due to the reduction of swimming and feeding abilities. [1] While the exact mechanism of PAH toxicity is unknown, there are four proposed mechanisms. [4] The difficulty in finding a specific toxic mechanism is largely due to the wide variety of PAH compounds with differing properties. [4]

History

Close-up picture of Kemp's Ridley Turtle polluted in heavy oil on June 1st, 2010. Oiled Turtle.jpg
Close-up picture of Kemp's Ridley Turtle polluted in heavy oil on June 1st, 2010.

Research on the environmental impact of the petroleum industry began in earnest, during the mid to late 20th century, as the oil industry developed and expanded. [5] Large scale transport of crude oil increased as a result of the increasing worldwide demand for oil, subsequently increasing the number of oil spills. [5] Oil spills provided perfect opportunities for scientists to examine the in situ effects of crude oil exposure to marine ecosystems, and collaborative efforts between the National Oceanic and Atmospheric Administration (NOAA) and the United States Coast Guard resulted in improved response efforts and detailed research on oil pollution's effects. [5] The Exxon Valdez oil spill in 1989, and the Deepwater Horizon oil spill in 2010, both resulted in increased scientific knowledge on the specific effects of oil pollution toxicity to marine fish.

Exxon Valdez oil spill

Focused research on oil pollution toxicity to fish began in earnest in 1989, after the Exxon Valdez tanker struck a reef in Prince William Sound, Alaska and spilled approximately 11 million gallons of crude oil into the surrounding water. [6] At the time, the Exxon Valdez oil spill was the largest in the history of the United States. [6] There were many adverse ecological impacts of the spill including the loss of the loss of billions of Pacific herring and pink salmon eggs. [5] Pacific herring were just beginning to spawn in late March when the spill occurred, resulting in nearly half of the population's eggs being exposed to crude oil. Pacific herring spawn in the intertidal and subtidal zones, making the vulnerable eggs easily exposed to pollution. [1]

Aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Deepwater Horizon Oil Spill Site.jpg
Aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico.

Deepwater Horizon oil spill

After April 20, 2010, when an explosion on the Deepwater Horizon Macondo oil drilling platform triggered the largest oil spill in US history, another opportunity for oil toxicity research was presented. [7] Approximately 171 million gallons of crude oil flowed from the seafloor into the Gulf of Mexico, exposing the majority of the surrounding biota. [7] The Deepwater Horizon oil spill also coincided directly with spawning window of various ecologically and commercially important fish species, including yellowfin and Atlantic bluefin tuna. [8] The oil spill directly affected Atlantic bluefin tuna, as approximately 12% of larval tuna were located in oil-contaminated waters, [9] and Gulf of Mexico is the only known spawning grounds for the western population of bluefin tuna. [7]

A decaying fish trapped in oil inside the Bay of Isles, Alaska after the Exxon Valdez oil spill. Exxon Valdez Oil Spill - 0085.jpg
A decaying fish trapped in oil inside the Bay of Isles, Alaska after the Exxon Valdez oil spill.

Exposure to oil

Oil spills, as well as daily oil runoff from urbanized areas, can lead to polycyclic aromatic hydrocarbon (PAHs) entering marine ecosystems. Once PAHs enter the marine environment, fish can be exposed to them via ingestion, ventilation of the gills, and dermal uptake. [10] The major route of uptake will depend on the behavior of the species of fish and the physicochemical properties of the PAH of concern. Habitat can be a major deciding factor for the route of exposure. For example, demersal fish or fish that consume demersal fish are highly likely to ingest PAHs that have sorbed to the sediment, whereas fish that swim at the surface are at a higher risk for dermal exposure. Upon coming in contact with a PAH, bioavailability will affect how readily the PAH is taken up. The EPA identifies 16 major PAHs of concern and each of these PAHs has a different degree of bioavailability. For instance, PAHs with lower molecular weight are more bioavailable because they dissolve more readily in water and are therefore more bioavailable for fish within the water column. Similarly, hydrophilic PAHs are more bioavailable for uptake by fish. For this reason, usage of oil dispersants, like Corexit, to treat oil spills can increase the uptake of PAHs by increasing their solubility in water and making them more available for uptake via the gills. [10] Once a PAH is taken up, the fish's metabolism can affect the duration and intensity of the exposure to target tissues. Fish are able to readily metabolize 99% of PAHs to a more hydrophilic metabolite through their hepato-biliary system. [10] This allows for the excretion of PAHs. The rate of metabolism of PAHs will depend on the sex and size of the species. The ability to metabolize PAHs into a more hydrophilic form can prevent bioaccumulation and halt PAHs from being passed on to organisms further up the food web. Because oil can persist in the environment long after oil spills via sedimentation, demersal fish are likely to be continually exposed to PAHs many years after oil spills. This has been proven by looking at the biliary PAH metabolites of bottom-dwelling fish. For instance, bottom-dwelling fish still showed elevated levels of low molecular weight PAH metabolites 10 years after Exxon Valdez oil spill. [10]

Crude oil components

Crude oil is composed of more than 17,000 compounds. [11] Among these 17,000 compounds are PAHs, which are considered the most toxic components of oil. [10] PAHs are formed by pyrogenic and petrogenic processes. Petrogenic PAHs are formed by the elevated pressure of organic material. In contrast, pyrogenic PAHs are formed through the incomplete combustion of organic material. Crude oil naturally contains petrogenic PAHs and these PAH levels are increased significantly through the burning of oil which creates pyrogenic PAHs. The level of PAHs found in crude oil differs with the type of crude oil. For example, crude oil from the Exxon Valdez oil spill had PAH concentrations of 1.47%, while PAH concentrations from the North Sea have much lower PAH concentrations of 0.83%. [10]

Sources of crude oil pollution

Crude oil contamination in marine ecosystems can lead to both pyrogenic and petrogenic PAHs entering these ecosystems. Petrogenic PAHs can enter waterways through oil seeps, major oil spills, creosote and fuel oil runoff from urban areas. [12] Pyrogenic PAH sources consist of diesel soot tire rubber and coal dust. [13] Although there are natural sources of PAHs such as volcanic activity and seepage of coal deposits, anthropogenic sources pose the most significant input of PAHs into the environment. [12] These anthropogenic sources include residential heating, asphalt production, coal gasification, and petroleum usage. [12] Petrogenic PAH contamination is more common from crude oil spills such as Exxon Valdez, or oil seeps; however, with runoff pyrogenic PAHs can also be prevalent. Although major oil spills such as Exxon Valdez can introduce a large amount of crude oil to a localized area in a short time span, daily runoff comprises most of the oil pollution to marine ecosystems. Atmospheric deposition can also be a source of PAHs into marine ecosystems. The deposition of PAHs from the atmosphere into a water body is largely influenced by the gas-particle partitioning of the PAH. [12]

Effects

Heavily oiled Brown Pelicans captured at Grand Isle, Louisiana Heavily oiled Brown Pelicans captured at Grand Isle.jpg
Heavily oiled Brown Pelicans captured at Grand Isle, Louisiana

Many effects of PAH exposure have been observed in marine fish. Specifically, studies have been conducted on the embryonic and larval fish, the development of fish exposed to PAHs, and uptake of PAHs by fish via various routes of exposure. One study on found that Pacific herring eggs exposed to conditions mimicking the ‘’Exxon Valdez’’ oil spill resulted in premature hatching of eggs, reduced size as fish matured and significant teratogenic effects, including skeletal, cardiovascular, fin and yolk sac malformations. [1] Yolk sac edema was responsible for the majority of herring larval mortality. [1] The teratogenic malformations in the dorsal fin and spine, and in the jaw were observed to effectively decrease the survival of developing fish, through the impairing of swimming and feeding ability respectively. Feeding and prey avoidance via swimming are crucial for the survival of larval and juvenile fish. [1] All effects observed in herring eggs in the study were consistent with effects observed in exposed fish eggs following the Exxon Valdez oil spill. [1] Zebrafish embryos exposed to oil were observed to have severe teratogenic defects similar to those seen in herring embryos, including edema, cardiac dysfunction, and intracranial hemorrhages. [3] In a study focused on the uptake of PAHs by fish, salmon embryos were exposed to crude oil in three various situations, including via effluent from oil-coated gravel. [2] PAH concentrations in embryos directly exposed to oil and those exposed to PAH effluent were not significantly different. PAH exposure was observed to lead to death, even when the PAHs were exposed to fish via effluent. From the results, it was determined that fish embryos near the Exxon Valdez spill in Prince William Sound that were not directly in contact with oil still may have accumulated lethal levels of PAHs. [2] While many laboratory and natural studies have observed significant adverse effects of PAH exposure to fish, a lack of effects has also been observed for certain PAH compounds, which could be due to a lack of uptake during exposure to the compound. [3]

Proposed mechanism of toxic action

While it has been proven that different classes of PAHs act through distinct toxic mechanisms due to the variations in their molecular weight, ring arrangements, and water solubility properties, the specific mechanisms of PAH toxicity to fish and fish development are still unknown. [3] Toxicity depends on the extent to which chemical in the oil will mix with water: this is referred to as the water associated fraction of the oil. The proposed mechanisms of toxicity of PAHs are toxicity through narcosis, interaction with the AhR pathway, alkyl phenanthrene toxicity, and additive toxicity by multiple mechanisms. [4]

See also

Related Research Articles

<i>Exxon Valdez</i> oil spill 1989 industrial disaster in Alaska

The Exxon Valdez oil spill was a major environmental disaster that made worldwide headlines in the spring of 1989 and occurred in Alaska's Prince William Sound on March 24, 1989. The spill occurred when Exxon Valdez, an oil supertanker owned by Exxon Shipping Company, bound for Long Beach, California, struck Prince William Sound's Bligh Reef, 6 mi (9.7 km) west of Tatitlek, Alaska at 12:04 a.m. The tanker spilled approximately 10.8 million US gallons (260,000 bbl) of crude oil over the next few days.

<span class="mw-page-title-main">Oil spill</span> Release of petroleum into the environment

An oil spill is the release of a liquid petroleum hydrocarbon into the environment, especially the marine ecosystem, due to human activity, and is a form of pollution. The term is usually given to marine oil spills, where oil is released into the ocean or coastal waters, but spills may also occur on land. Oil spills may be due to releases of crude oil from tankers, offshore platforms, drilling rigs and wells, as well as spills of refined petroleum products and their by-products, heavier fuels used by large ships such as bunker fuel, or the spill of any oily refuse or waste oil.

<span class="mw-page-title-main">Atlantic bluefin tuna</span> Species of fish

The Atlantic bluefin tuna is a species of tuna in the family Scombridae. It is variously known as the northern bluefin tuna, giant bluefin tuna [for individuals exceeding 150 kg (330 lb)], and formerly as the tunny.

The Valdez Blockade was a 1993 protest by Cordova fishermen who blockaded the Valdez Narrows in an attempt to obtain funding for research and restoration efforts relating to decreasing yields of pink salmon and herring in Prince William Sound following the Exxon Valdez Oil Spill. The fishermen were dissatisfied with the Exxon Valdez Oil Spill Trustee’s Council’s refusal to fund research efforts into the spill's effects on the fish. The blockade lasted three days, from August 20 to August 22. The blockade ended when Secretary of the Interior, Bruce Babbitt, promised funding for salmon and herring research. Findings from these studies resulted in additional compensation from Exxon.

<span class="mw-page-title-main">Rocky shore</span> Intertidal area of coast where solid rock predominates

A rocky shore is an intertidal area of seacoasts where solid rock predominates. Rocky shores are biologically rich environments, and are a useful "natural laboratory" for studying intertidal ecology and other biological processes. Due to their high accessibility, they have been well studied for a long time and their species are well known.

<span class="mw-page-title-main">Unresolved complex mixture</span>

Unresolved complex mixture (UCM), or hump, is a feature frequently observed in gas chromatographic (GC) data of crude oils and extracts from organisms exposed to oil.

<span class="mw-page-title-main">Health and environmental impact of the petroleum industry</span>

The environmental impact of the petroleum industry is extensive and expansive due to petroleum having many uses. Crude oil and natural gas are primary energy and raw material sources that enable numerous aspects of modern daily life and the world economy. Their supply has grown quickly over the last 150 years to meet the demands of the rapidly increasing human population, creativity, knowledge, and consumerism.

<i>Deepwater Horizon</i> oil spill Oil spill in the Gulf of Mexico

The Deepwater Horizon oil spill was an environmental disaster which began on 20 April 2010, off the coast of the United States in the Gulf of Mexico on the BP-operated Macondo Prospect, considered the largest marine oil spill in the history of the petroleum industry and estimated to be 8 to 31 percent larger in volume than the previous largest, the Ixtoc I oil spill, also in the Gulf of Mexico. Caused in the aftermath of a blowout and explosion on the Deepwater Horizon oil platform, the United States federal government estimated the total discharge at 4.9 MMbbl. After several failed efforts to contain the flow, the well was declared sealed on 19 September 2010. Reports in early 2012 indicated that the well site was still leaking. The Deepwater Horizon oil spill is regarded as one of the largest environmental disasters in world history.

<span class="mw-page-title-main">Corexit</span> Oil dispersant

Corexit is a product line of oil dispersants used during oil spill response operations. It is produced by Nalco Holding Company, an indirect subsidiary of Ecolab. Corexit was originally developed by the Standard Oil Company of New Jersey. Corexit is typically applied by aerial spraying or spraying from ships directly onto an oil slick. On contact with the dispersant, oil that would otherwise float on the surface of the water is emulsified into tiny droplets and sinks or remains suspended in the water. In theory this allows the oil to be more rapidly degraded by bacteria (bioremediation) and prevents it from accumulating on beaches and in marshes.

<span class="mw-page-title-main">Water pollution in the United States</span> Overview of water pollution in the United States of America

Water pollution in the United States is a growing problem that became critical in the 19th century with the development of mechanized agriculture, mining, and industry, although laws and regulations introduced in the late 20th century have improved water quality in many water bodies. Extensive industrialization and rapid urban growth exacerbated water pollution as a lack of regulation allowed for discharges of sewage, toxic chemicals, nutrients and other pollutants into surface water.

<span class="mw-page-title-main">Oil dispersant</span> Mixture of emulsifiers and solvents used to treat oil spills

An oil dispersant is a mixture of emulsifiers and solvents that helps break oil into small droplets following an oil spill. Small droplets are easier to disperse throughout a water volume, and small droplets may be more readily biodegraded by microbes in the water. Dispersant use involves a trade-off between exposing coastal life to surface oil and exposing aquatic life to dispersed oil. While submerging the oil with dispersant may lessen exposure to marine life on the surface, it increases exposure for animals dwelling underwater, who may be harmed by toxicity of both dispersed oil and dispersant. Although dispersant reduces the amount of oil that lands ashore, it may allow faster, deeper penetration of oil into coastal terrain, where it is not easily biodegraded.

<span class="mw-page-title-main">Gulf killifish</span> Species of fish

The Gulf killifish is one of the largest members of the genus Fundulus; it is capable of growing up to 7 inches (18 cm) in length, whereas the majority of other Fundulus reach a maximum length of 4 inches (10 cm). Therefore, F. grandis is among the largest minnows preyed upon by many sport fish, such as flounder, speckled trout, and red drum. Fundulus derives from the Latin meaning "bottom," and grandis means "large". The Gulf killifish is native to the Gulf of Mexico from Texas to Florida and the eastern coast of Florida and the Caribbean Sea in the Atlantic Ocean. Threats to the survival of the Gulf killifish include extreme changes in salinity, changes in temperatures, and toxic events such as the hypoxic dead zone in Louisiana and the Deepwater Horizon oil spill. The Gulf killifish is currently being used to test the effects of oil and oil dispersants on the physiology of marine species affected by these substances. This is significant to conservation biology, because with the continued extraction of oil and other natural resources from North American waters, it has become increasingly important to understand the risks and consequences in worst-case scenarios, such as the Deepwater Horizon oil spill, and the lasting effects on the marine ecosystem.

International Bird Rescue is a nonprofit organization that rehabilitates injured aquatic birds, most notably seabirds affected by oil spills. Founded by Alice Berkner and members of the Ecology Action, including veterinarian James Michael Harris, D.V.M. in 1971 and based in Cordelia, California, the group has developed scientifically-based bird rehabilitation techniques and has led oiled wildlife rescue efforts in more than 200 oil spills worldwide, including the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska, and the 2010 Deepwater Horizon oil spill in the Gulf of Mexico, where International Bird Rescue co-managed oiled bird rehabilitation efforts in four states with Tri-State Bird Rescue and Research.

<span class="mw-page-title-main">Riki Ott</span> American marine toxicologist and activist

Riki Ott is a marine toxicologist and activist in Cordova, Alaska. Ott was frequently introduced as an "oil spill expert" in her many media appearances during the height of the 2010 BP Deepwater Horizon oil spill news coverage. After graduating with a doctorate in sedimentary toxicology from the University of Washington, Ott moved to Alaska and started a fishing business. When the Exxon Valdez oil spill disrupted the local fishing-based economy, she became an environmental activist. Since the spill, she has participated in legal and public relations disputes with the Exxon company.

Environmental impact of the <i>Deepwater Horizon</i> oil spill

The 2010 Deepwater Horizon oil spill in the Gulf of Mexico has been described as the worst environmental disaster in the United States, releasing about 4.9 million barrels of crude oil making it the largest marine oil spill. Both the spill and the cleanup efforts had effects on the environment.

Health consequences of the <i>Deepwater Horizon</i> oil spill

The Health consequences of the Deepwater Horizon oil spill are health effects related to the explosion of the Deepwater Horizon offshore drilling rig in the Gulf of Mexico on April 20, 2010. An oil discharge continued for 84 days, resulting in the largest oil spill in the history of the petroleum industry, estimated at approximately 206 million gallons. The spill exposed thousands of area residents and cleanup workers to risks associated with oil fumes, particulate matter from Controlled burns, volatile organic compounds (VOCs), polycylic aromatic hydrocarbons (PAHs), and heavy metals.

<i>Deepwater Horizon</i> oil spill response Containment and cleanup efforts

The Deepwater Horizon oil spill occurred between 10 April and 19 September 2010 in the Gulf of Mexico. A variety of techniques were used to address fundamental strategies for addressing the spilled oil, which were: to contain oil on the surface, dispersal, and removal. While most of the oil drilled off Louisiana is a lighter crude, the leaking oil was of a heavier blend which contained asphalt-like substances. According to Ed Overton, who heads a federal chemical hazard assessment team for oil spills, this type of oil emulsifies well. Once it becomes emulsified, it no longer evaporates as quickly as regular oil, does not rinse off as easily, cannot be broken down by microbes as easily, and does not burn as well. "That type of mixture essentially removes all the best oil clean-up weapons", Overton said.

<span class="mw-page-title-main">GuLF Study</span>

The GuLF Study, or Gulf Long-term Follow-up Study, is a five-year research project examining the human-health consequences of the Deepwater Horizon oil spill in April 2010. The spill followed an explosion on a drilling rig leased by BP, the British oil company, and led to the release of over four million barrels of oil into the Gulf of Mexico, 48 miles off the coast of Louisiana in the United States.

Petroleum microbiology is a branch of microbiology that deals with the study of microorganisms that can metabolize or alter crude or refined petroleum products. These microorganisms, also called hydrocarbonoclastic microorganisms, can degrade hydrocarbons and, include a wide distribution of bacteria, methanogenic archaea, and some fungi. Not all hydrocarbonoclasic microbes depend on hydrocarbons to survive, but instead may use petroleum products as alternative carbon and energy sources. Interest in this field is growing due to the increasing use of bioremediation of oil spills.

Bioremediation of petroleum contaminated environments is a process in which the biological pathways within microorganisms or plants are used to degrade or sequester toxic hydrocarbons, heavy metals, and other volatile organic compounds found within fossil fuels. Oil spills happen frequently at varying degrees along with all aspects of the petroleum supply chain, presenting a complex array of issues for both environmental and public health. While traditional cleanup methods such as chemical or manual containment and removal often result in rapid results, bioremediation is less labor-intensive, expensive, and averts chemical or mechanical damage. The efficiency and effectiveness of bioremediation efforts are based on maintaining ideal conditions, such as pH, RED-OX potential, temperature, moisture, oxygen abundance, nutrient availability, soil composition, and pollutant structure, for the desired organism or biological pathway to facilitate reactions. Three main types of bioremediation used for petroleum spills include microbial remediation, phytoremediation, and mycoremediation. Bioremediation has been implemented in various notable oil spills including the 1989 Exxon Valdez incident where the application of fertilizer on affected shoreline increased rates of biodegradation.

References

  1. 1 2 3 4 5 6 7 Carls, MG, Rice, SD, Hose, JE. 1999. Sensitivity of fish embryos to weathered crude oil: Part I. Low‐level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi). Environmental Toxicology and Chemistry, 18 (3): 481–493.
  2. 1 2 3 Heintz, RA, Short, JW, Rice, SD. 1999 Sensitivity of fish embryos to weathered crude oil: Part II. Increased mortality of pink salmon (Oncorhynchus gorbuscha) embryos incubating downstream from weathered Exxon Valdez crude oil. Environmental Toxicology and Chemistry, 18 (3): 494–503.
  3. 1 2 3 4 5 Incardona, JP, Carls, MG, Teroaka, H, Sloan, CA, Collier, TK, Scholz, NL. 2005. Aryl Hydrocarbon Receptor-Independent Toxicity of Weathered Crude Oil during Fish Development. Environmental Health Perspectives, 113 (12): 1755–1762.
  4. 1 2 3 4 5 6 7 Barron MG, Carls MG, Heintz R, Rice SD. 2003. Evaluation of fish early-life stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Oxford Journals. 78(1): 60–67.
  5. 1 2 3 4 Shigenaka, G. 2014. Twenty-Five Years After the Exxon Valdez Oil Spill: NOAA’s Scientific Support, Monitoring and Research. Seattle: NOAA Office of Response and Restoration.
  6. 1 2 Skinner, SK, Reilly, WK. 1989. The Exxon Valdez Oil Spill: A Report to the President. United States National Response Team.
  7. 1 2 3 Adams, A. 2015. Summary of Information concerning the Ecological and Economic Impacts of the BP Deepwater Horizon Oil Spill Disaster. National Resource Defense Council. IP:15-04-A
  8. Incardona JP, Gardner LD, Linbo TL, Brown TL, Esbaugh AJ, Mager E, Stieglitz JD, French BL, Labenia JS, Laetz CA, Tagal M, Sloan CA, Elizur A, Benetti DD, Grosell M, Block BA, Scholz NL. 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the National Academy of Sciences of the United States of America, 111(15): 1510–1518.
  9. Muhling, BA, Roffer, MA, Lamkin, JT, Ingram Jr., GW, Upton, MA, Gawlikowski, G, Muller-Karger, F, Habtes, S, Richards, WJ. 2012. Overlap between Atlantic bluefin tuna spawning grounds and observed Deepwater Horizon surface oil in the northern Gulf of Mexico. Marine Pollution Bulletin. 64(4): 679–687.
  10. 1 2 3 4 5 6 Snyder, Susan, Erin Pulster, Dana Wetzel, Steven Murawski. 2015. PAH exposure in Gulf of Mexico demersal fishes, post- deepwater horizon. Environmental Science and Technology 49: 8786–8795.
  11. Simanzhenkov, V., & Idem, R. (2003). Crude Oil Chemistry (1st ed.). CRC Press. https://doi.org/10.1201/9780203014042
  12. 1 2 3 4 Hussein, Abdel, and Mona Mansour. 2015. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25: 107–123
  13. Burgess, RM, Ryba, S, Cantwell, M, Perron, MM, Tien, R, Thibideau, LM. 2001. Bioavailability of PAHs from pyrogenic and petrogenic sources using glass fish. Society of Environmental Toxicology and Chemistry Annual Meeting, Baltimore, MD.