Oleanane

Last updated
18β-Oleanane
Oleanane.svg
Names
IUPAC name
Oleanane [1]
Systematic IUPAC name
(4aR,6aR,6bR,8aS,12aS,12bR,14aR,14bS)-2,2,4a,6a,6b,9,9,12a-Octamethyldocosahydropicene
Identifiers
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C30H52/c1-25(2)16-17-27(5)18-19-29(7)21(22(27)20-25)10-11-24-28(6)14-9-13-26(3,4)23(28)12-15-30(24,29)8/h21-24H,9-20H2,1-8H3/t21-,22+,23+,24-,27-,28+,29-,30-/m1/s1 Yes check.svgY
    Key: VCNKUCWWHVTTBY-KQCVGMHHSA-N Yes check.svgY
  • InChI=1/C30H52/c1-25(2)16-17-27(5)18-19-29(7)21(22(27)20-25)10-11-24-28(6)14-9-13-26(3,4)23(28)12-15-30(24,29)8/h21-24H,9-20H2,1-8H3/t21-,22+,23+,24-,27-,28+,29-,30-/m1/s1
    Key: VCNKUCWWHVTTBY-KQCVGMHHBI
Properties
C30H52
Molar mass 412.746 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Oleanane is a natural triterpenoid. It is commonly found in woody angiosperms and as a result is often used as an indicator of these plants in the fossil record. It is a member of the oleanoid series, which consists of pentacyclic triterpenoids (such as beta-amyrin and taraxerol [ verification needed ]) where all rings are six-membered.

Contents

Structure

Oleanane is a pentacyclic triterpenoid, a class of molecules made up of six connected isoprene units. The naming of both the ring structures and individual carbon atoms in oleanane is the same as in steroids. As such, it consists of a A, B, C, D, and E ring, all of which are six-membered rings. [2] [ failed verification ]

The structure of oleanane contains a number of different methyl groups, that vary in orientation between different oleananes. For example, in 18-alpha-oleanane contains a downward facing methyl group for the 18th carbon atom, while 18-beta-oleanane contains an upward facing methyl group at the same position.

A and B rings of the oleanane structure are identical to that of hopane. As a result, both molecules produce a fragment of m/z 191. Because this fragment is often used to identify hopanes, oleanane can be mis-identified in hopane analysis.

Synthesis

Like other triterpenoids, are formed from six combined isoprene units. [2] These isoprene units can be combined via a number of different pathways. In eukaryotes (including plants), this pathway is the mevalonate (MVA) pathway. For the formation of steroids and other triterpenoids the isoprenoids are combined into a precursor known as squalene, which then undergoes enzymatic cyclization to produce the various different triterpenoids, including oleanane. [2]

Once the oleananes have been transported into rocks or sediments they will undergo further alteration before they are measured.

Measurement in Rock Samples

Oleananes can be identified in extracts from rock samples (or plants) using GC/MS. A GC/MS is a gas chromatograph coupled with a mass spectrometer. The sample is first injected into the system, then run through as chromatographic column. How fast a material moves through a chromatographic column depends on how long it spends in each of the two stages there. Compounds that partition more into the mobile phase will move faster as opposed to compounds that partition more into the stationary phase. The result of this is a separation of different organic molecules based on their retention time in the GC.

After being separated by the GC, the compounds can then be analyzed by a mass spectrometer. Each compound will contain a characteristic mass spectrum, based on the fragments it splits into during ionization in the mass spectrometer. This means that the GC can not only separate different types of molecules, it can also identify them.

As mentioned above, they have a characteristic mass fragment at m/z = 191, and thus will appear in the same selected ion chromatograph (SIC) as hopanes. This can help one identify them in GC/MS datasets.

Uses

As a biomarker

Oleanane has been identified as a compound in modern day angiosperms. [3]

Because of this, its presence is the fossil record has also been used to trace angiosperms through the fossil record. For example, the ratio of 18-alpha-oleanane + 18-beta-oleanane:17-alpha-hopane in rock extracts (and associated petroleums/oils) has been found to correlate (at least broadly) to the presence of angiosperms in the fossil record. [4] In this study, the combination of alpha and beta-oleanane were used as indicators for the presence of angiosperms. They are normalized to hopanes, which are broadly present in almost all rock extracts coming from petroleum. Furthermore, because of the structural similarities between hopanes and oleananes, it is assumed that they will react similarly to the various weathering processes that degrade the biomarkers present. As such, the ratio of hopanes to oleananes should be similar to the initial ratio, and unaffected by processes occurring in the rock after fossilization.

There is some delay in the accepted increases in taxonomic diversification of angiosperms (which occurred during the mid-Cretaceous period) and the increase of oleanane concentrations in the fossil record (which occurred in the late-Cretaceous or even after). This could be due to a number of factors, one being that the early angiosperms were more herbaceous than woody and that woody angiosperms only appeared after further taxonomic diversification. [4]

Lastly, the study introduced the idea of an "oleanane parameter," which could be used in assessing angiosperm input to petroleum sources. This, in turn, gives some idea of the age of said petroleum sources. [4]

That being said, the presence of angiosperms may not be the only thing affecting the oleanane content of sediments, rock extracts and petroleum. For example, there is evidence that contact with seawater during early sedimentation processes can increase the concentration of oleananes in the mature sediment. [5] This evidence comes from the fact that various indicators of marine influence (C27/C29 sterane ratios, changes in elemental composition in the downstream direction that are indicative of the infiltration of water into the system and the homophane index). Despite this, it is still unclear as to how marine influence enhances the expression of oleananes (thus increasing observed concentration). Some ideas include the changes in pH, Eh and the microbial environment that come with the interaction with seawater. [5]

See also

Related Research Articles

The terpenoids, also known as isoprenoids, are a class of naturally occurring organic chemicals derived from the 5-carbon compound isoprene and its derivatives called terpenes, diterpenes, etc. While sometimes used interchangeably with "terpenes", terpenoids contain additional functional groups, usually containing oxygen. When combined with the hydrocarbon terpenes, terpenoids comprise about 80,000 compounds. They are the largest class of plant secondary metabolites, representing about 60% of known natural products. Many terpenoids have substantial pharmacological bioactivity and are therefore of interest to medicinal chemists.

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

Butene, also known as butylene, is an alkene with the formula C4H8. The word butene may refer to any of the individual compounds. They are colourless gases that are present in crude oil as a minor constituent in quantities that are too small for viable extraction. Butene is therefore obtained by catalytic cracking of long-chain hydrocarbons left during refining of crude oil. Cracking produces a mixture of products, and the butene is extracted from this by fractional distillation.

<span class="mw-page-title-main">Gas chromatography–mass spectrometry</span> Analytical method

Gas chromatography–mass spectrometry (GC-MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC-MS include drug detection, fire investigation, environmental analysis, explosives investigation, and identification of unknown samples, including that of material samples obtained from planet Mars during probe missions as early as the 1970s. GC-MS can also be used in airport security to detect substances in luggage or on human beings. Additionally, it can identify trace elements in materials that were previously thought to have disintegrated beyond identification. Like liquid chromatography–mass spectrometry, it allows analysis and detection even of tiny amounts of a substance.

<span class="mw-page-title-main">Brassicasterol</span> Chemical compound

Brassicasterol is a 28-carbon sterol synthesised by several unicellular algae (phytoplankton) and some terrestrial plants, like rape. This compound has frequently been used as a biomarker for the presence of (marine) algal matter in the environment, and is one of the ingredients for E number E499. There is some evidence to suggest that it may also be a relevant additional biomarker in Alzheimer's disease.

<span class="mw-page-title-main">Cholestane</span> Chemical compound

Cholestane is a saturated tetracyclic triterpene. This 27-carbon biomarker is produced by diagenesis of cholesterol and is one of the most abundant biomarkers in the rock record. Presence of cholestane, its derivatives and related chemical compounds in environmental samples is commonly interpreted as an indicator of animal life and/or traces of O2, as animals are known for exclusively producing cholesterol, and thus has been used to draw evolutionary relationships between ancient organisms of unknown phylogenetic origin and modern metazoan taxa. Cholesterol is made in low abundance by other organisms (e.g., rhodophytes, land plants), but because these other organisms produce a variety of sterols it cannot be used as a conclusive indicator of any one taxon. It is often found in analysis of organic compounds in petroleum.

<span class="mw-page-title-main">Triterpene</span> Class of chemical compounds

Triterpenes are a class of terpenes composed of six isoprene units with the molecular formula C30H48; they may also be thought of as consisting of three terpene units. Animals, plants and fungi all produce triterpenes, including squalene, the precursor to all steroids.

<span class="mw-page-title-main">Ginsenoside</span> Class of steroids

Ginsenosides or panaxosides are a class of natural product steroid glycosides and triterpene saponins. Compounds in this family are found almost exclusively in the plant genus Panax (ginseng), which has a long history of use in traditional medicine that has led to the study of pharmacological effects of ginseng compounds. As a class, ginsenosides exhibit a large variety of subtle and difficult-to-characterize biological effects when studied in isolation.

<span class="mw-page-title-main">Abietane</span> Chemical compound

Abietane is a diterpene that forms the structural basis for a variety of natural chemical compounds such as abietic acid, carnosic acid, and ferruginol which are collectively known as abietanes or abietane diterpenes.

<span class="mw-page-title-main">Taraxerol</span> Chemical compound

Taraxerol is a naturally-occurring pentacyclic triterpenoid. It exists in various higher plants, including Taraxacum officinale (Asteraceae), Alnus glutinosa (Betulaceae), Litsea dealbata (Lauraceae), Skimmia spp. (Rutaceae), Dorstenia spp. (Moraceae), Maytenus spp. (Celastraceae), and Alchornea latifolia (Euphobiaceae). Taraxerol was named "alnulin" when it was first isolated in 1923 from the bark of the grey alder by Zellner and Röglsperger. It also had the name "skimmiol" when Takeda and Yosiki isolated it from Skimmia (Rutaceae). A large number of medicinal plants are known to have this compound in their leaves, roots or seed oil.

24-<i>n</i>-Propylcholestane Chemical compound

24-n-Propylcholestane is a sterane biomarker molecule often found in marine source rocks. It is a C30 molecule, meaning that it is composed of thirty carbon atoms, and is one of the leading ways to distinguish a marine source rock from a terrigenous sample. It is composed of three six-carbon rings and one five-carbon ring, with two methyl groups and one eleven carbon side chain. 24-n-Propylcholestane has a molar mass of 414.76 g/mol.

<span class="mw-page-title-main">Bisnorhopane</span> Chemical compound

Bisnorhopanes (BNH) are a group of demethylated hopanes found in oil shales across the globe and can be used for understanding depositional conditions of the source rock. The most common member, 28,30-bisnorhopane, can be found in high concentrations in petroleum source rocks, most notably the Monterey Shale, as well as in oil and tar samples. 28,30-Bisnorhopane was first identified in samples from the Monterey Shale Formation in 1985. It occurs in abundance throughout the formation and appears in stratigraphically analogous locations along the California coast. Since its identification and analysis, 28,30-bisnorhopane has been discovered in oil shales around the globe, including lacustrine and offshore deposits of Brazil, silicified shales of the Eocene in Gabon, the Kimmeridge Clay Formation in the North Sea, and in Western Australian oil shales.

The Mars Organic Molecule Analyser (MOMA) is a mass spectrometer-based instrument on board the Rosalind Franklin rover to be launched in 2028 to Mars on an astrobiology mission. It will search for organic compounds in the collected soil samples. By characterizing the molecular structures of detected organics, MOMA can provide insights into potential molecular biosignatures. MOMA will be able to detect organic molecules at concentrations as low as 10 parts-per-billion by weight (ppbw). MOMA examines solid crushed samples exclusively; it does not perform atmospheric analyses.

<span class="mw-page-title-main">24-Norcholestane</span> Chemical compound

24-Norcholestane, a steroid derivative, is used as a biomarker to constrain the source age of sediments and petroleum through the ratio between 24-norcholestane and 27-norcholestane, especially when used with other age diagnostic biomarkers, like oleanane. While the origins of this compound are still unknown, it is thought that they are derived from diatoms due to their identification in diatom rich sediments and environments. In addition, it was found that 24-norcholestane levels increased in correlation with diatom evolution. Another possible source of 24-norcholestane is from dinoflagellates, albeit to a much lower extent.

Chlorobactane is the diagenetic product of an aromatic carotenoid produced uniquely by green-pigmented green sulfur bacteria (GSB) in the order Chlorobiales. Observed in organic matter as far back as the Paleoproterozoic, its identity as a diagnostic biomarker has been used to interpret ancient environments.

<span class="mw-page-title-main">Tetrahymanol</span> Chemical compound

Tetrahymanol is a gammacerane-type membrane lipid first found in the marine ciliate Tetrahymena pyriformis. It was later found in other ciliates, fungi, ferns, and bacteria. After being deposited in sediments that compress into sedimentary rocks over millions of years, tetrahymanol is dehydroxylated into gammacerane. Gammacerane has been interpreted as a proxy for ancient water column stratification.

<span class="mw-page-title-main">Isoarborinol</span> Chemical compound

Isoarborinol is a triterpenoid ubiquitously produced by angiosperms and is thus considered a biomarker for higher plants. Though no isoarborinol-producing microbe has been identified, isoarborinol is also considered a possible biomarker for marine bacteria, as its diagenetic end product, arborane, has been found in ancient marine sediments that predate the rise of plants. Importantly, isoarborinol may represent the phylogenetic link between hopanols and sterols.

<span class="mw-page-title-main">Sugiol</span> Chemical compound

Sugiol is a phenolic abietane derivative of ferruginol and can be used as a biomarker for specific families of conifers. The presence of sugiol can be used to identify the Cupressaceae s.1., podocarpaceae, and Araucaraiaceae families of conifers. The polar terpenoids are among the most resistant molecules to degradation besides n-alkanes and fatty acids, affording them high viability as biomarkers due to their longevity in the sedimentary record. Significant amounts of sugiol has been detected in fossil wood dated to the Eocene and Miocene periods, as well as a sample of Protopodocarpoxylon dated to the middle Jurassic.

Arborane is a class of pentacyclic triterpene consisting of organic compounds with four 6-membered rings and one 5-membered ring. Arboranes are thought to be derived from arborinols, a class of natural cyclic triterpenoids typically produced by flowering plants. Thus arboranes are used as a biomarker for angiosperms and cordaites. Arborane is a stereoisomer of a compound called fernane, the diagenetic product of fernene and fernenol. Because aborinol and fernenol have different biological sources, the ratio of arborane/fernane in a sample can be used to reconstruct a record for the relative abundances of different plants.

<span class="mw-page-title-main">Diplopterol</span> Chemical compound

Diplopterol is a triterpenoid biomarker commonly produced by bacteria, ferns, and a few protozoans. This compound, typically classified with the hopanoid family, is synthesized from squalene in the absence of oxygen, and thus its presence or absence in a particular sediment can be used to estimate the oxygen content in that area during the time the rock was formed.

References

  1. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 1538. doi:10.1039/9781849733069. ISBN   978-0-85404-182-4.
  2. 1 2 3 "killopsiog". sites.google.com. Retrieved 2019-05-15.
  3. Baas, Wim J. (January 1985). "Naturally occurring seco-ring-A-triterpenoids and their possible biological significance". Phytochemistry. 24 (9): 1875–1889. doi:10.1016/s0031-9422(00)83085-x.
  4. 1 2 3 Taylor, David Winship; Peakman, Torren M.; Hickey, Leo J.; Fago, Frederick J.; Huizinga, Bradley J.; Dahl, Jeremy; Moldowan, J. Michael (1994-08-05). "The Molecular Fossil Record of Oleanane and Its Relation to Angiosperms". Science. 265 (5173): 768–771. Bibcode:1994Sci...265..768M. doi:10.1126/science.265.5173.768. ISSN   0036-8075. PMID   17736275.
  5. 1 2 "Oleananes in oils and sediments: Evidence of marine influence during early diagenesis? | Request PDF". ResearchGate. Retrieved 2019-05-15.