Nickel forms a series of mixed oxide compounds which are commonly called nickelates. A nickelate is an anion containing nickel or a salt containing a nickelate anion, or a double compound containing nickel bound to oxygen and other elements. Nickel can be in different or even mixed oxidation states, ranging from +1, +2, +3 to +4. The anions can contain a single nickel ion, or multiple to form a cluster ion. The solid mixed oxide compounds are often ceramics, but can also be metallic. They have a variety of electrical and magnetic properties. Rare-earth elements form a range of perovskite nickelates, in which the properties vary systematically as the rare-earth element changes. Fine tuning of properties is achievable with mixtures of elements, applying stress or pressure, or varying the physical form.
Inorganic chemists call many compounds that contain nickel centred anions "nickelates". These include the chloronickelates, fluoronickelates, tetrabromonickelates, tetraiodonickelates, cyanonickelates, nitronickelates and other nickel-organic acid complexes such as oxalatonickelates.
The lithium nickelates are of interest to researchers as cathodes in lithium cells, as these substance can hold a variable amount of lithium, with the nickel varying in oxidation state. [1]
Rare-earth nickelates with nickel in a +1 oxidation state have an electronic configuration to same as for cuprates and so are of interest to high-temperature superconductor researchers. Other rare-earth nickelates can function as fuel cell catalysts. The ability to switch between an insulating and a conducting state in some of these materials is of interest in the development of new transistors, that have higher on to off current ratios. [2]
The rare-earth nickelates were first made by Demazeau et al. in 1971, by heating a mixture of oxides under high pressure oxygen, or potassium perchlorate. However they were unable to make the cerium, praseodymium, and terbium nickelates. [3] This may be because Ce, Pr and Tb oxidises to 4+ions in those conditions. [4] For two decades after that no one paid attention to them. [4] Many rare-earth nickelates have the Ruddlesden–Popper phase structure.
formula | name | other names | structure | Remarks | references |
---|---|---|---|---|---|
LiNiO2 | lithium nickelate | rhombohedral a = 2.88 Å, c = 14.2 Å, density = 4.78 / 4.81 | [5] | ||
Li2NiO3 | monoclinic C2/ma = 4.898 Å, b = 8.449 Å, c = 4.9692 Å, β = 109.02°, V = 194.60 Å3 | Nickel in +4 state | [1] | ||
NaNiO2 | sodium nickelate | monoclinic a = 5.33 Å, b = 2.86 Å, c = 5.59 Å, β = 110°30′, Z = 2, density = 4.74; over 220 °C: rhombohedral a = 2.96 Å, b = 15.77 Å | Carbon dissolved in the molten salt can precipitate diamond. | [5] [6] | |
KNiO2 | potassium nickelate | [5] [7] | |||
SrTiNiO3[ dubious ] | strontium titanate nickelate | STN | [8] | ||
YNiO3 | yttrium nickelate | monoclinic P21/n; orthorhombic a = 5.516 Å, b = 7.419 Å, c = 5.178 Å, V = 211.9 Å3, Z = 4, density = 6.13 | insulator changes to metal under pressure | [9] [10] | |
Y2BaNiO5 | chain nickelate | Orthorhombic Immm, a = 3.7589, b = 5.7604, c = 11.3311 | [11] [12] | ||
2H-AgNiO2 | hexagonal P63/mmc, a = 2.93653 Å, b = 2.93653 Å, c = 12.2369 Å, V = 91.384 Å3, Z = 2, density = 7.216 g/cm3 | Ni in +3 state | [13] | ||
3R-AgNiO2 | trigonal R32/m, a = 2.9390 Å, c = 18.3700 Å | Ni in +3 state | [13] [14] | ||
Ag2NiO2 | silveroxonickelate | trigonal R32/m, a = 2.926 Å, c = 24.0888 Å | lustrous black solid, stable in air; Ni3+ and subvalent Ag2+ | [14] | |
Ag3Ni2O4 | hexagonal P63/mmc, a = 2.9331 Å, b = 2.9331 Å, c = 28.31 Å, V = 210.9 Å3, Z = 2, density = 7.951 g/cm3 | electric conductor | [15] | ||
BaNiO2 | orthorhombic a = 5.73 Å, b = 9.2 Å, c = 4.73 Å, V = 249 Å3, Z = 4 | black | [16] | ||
BaNiO3 | hexagonal a = 5.580 Å, c = 4.832 Å, V = 130.4 Å3, Z = 2 | black powder dec 730 °C N-type semiconductor; decompose in acid | [16] [17] | ||
Ba2Ni2O5 | hexagonal a = 5.72, c = 4.30, density = 6.4 | black needles melt 1200 °C | [16] [17] | ||
LaNiO2 | lanthanum nickelite | a = 3.959, c = 3.375 | Ni in +1 state | [18] | |
LaNiO3 | lanthanum nickelate | a = 5.4827 Å, b = 5.4827 Å, c = 3.2726 Å, γ = 120°, V = 345.5, Z = 6, density = 7.08 | metallic, no insulating transition polar metal | [19] | |
La2NiO4 | LN | tetragonal a = 3.86 Å, b = 3.86 Å, c = 12.67 Å, V = 188.8 Å3, Z = 2, density = 7.05 | [20] [21] | ||
La3Ni2O6 | tetragonal a = 3.968 Å, c = 19.32 Å | [20] | |||
La3Ni2O7 | a = 5.3961 Å, b = 5.4498 Å, c = 20.522 Å, V = 603.5, Z = 4, density = 7.1 | superconductor under pressure Tc=80K | [20] [22] [23] | ||
La4Ni3O8 | antiferromagnetic below 105 K, mixed valence I and II | [20] [24] | |||
La4Ni3O10 | [24] | ||||
La2−xSrxNiO4 | LSN | a varies from 3.86 to 3.81 as x changes from 0 to 0.5, then ≈ 3.81; c ≈ 12.7 for x ≤ 0.8, the it falls to 12.4 at x = 1.2 | polarization-specific metal | [25] | |
CeNiO3 | cerium nickelate | decomposes 1984 °C | [26] | ||
PrNiO2 | [20] | ||||
PrNiO3 | perovskite | metallic insulator transition=130K | [27] | ||
Pr4Ni3O8 | [20] | ||||
Pr2BaNiO5 | chain nickelate | Orthorhombic | [11] | ||
NdNiO3 | neodymium nickelate | perovskite orthorhombic Pbnm, a = 5.38712 Å, b = 5.38267 Å, c = 7.60940 Å | metallic insulator transition=200K | [10] [27] | |
NdNiO2 | orthorhombic a = 5.402 Å, b = 7.608 Å, c = 5.377 Å, V = 221.0 Å3, density = 7.54 | [20] [28] [29] | |||
Nd4Ni3O8 | orthorhombic a = 3.9171 Å, b = 3.9171 Å, c = 25.307 Å, V = 388.3 Å3, Z = 2, density = 7.54 | [20] [30] | |||
Nd2NiO4 | Cmca a = 5.383 Å, b = 12.342 Å, c = 5.445 Å, V = 361.7 Å3, density = 7.55 | [31] | |||
Nd2BaNiO5 | chain nickelate | Orthorhombic Immm, a = 2.8268 Å, b = 5.9272 Å, c = 11.651 Å | [11] [12] | ||
SmNiO3 | samarium nickelate | SNO | perovskite Pnma, a = 5.431 Å, b = 7.568 Å, c = 5.336 Å, V = 219.3 Å, Z = 4, density = 7.79 | metallic insulator transition=400K | [27] [32] |
Sm1.5Sr0.5NiO4 | SSNO | orthorhombic Bmab | giant dielectric constant 100,000 | [33] | |
EuNiO3 | europium nickelate | perovskite orthorhombic a = 5.466 Å, b = 7.542 Å, c = 5.293 Å, V = 218.2 Å3, Z = 4, density = 7.87 | metallic insulator transition=460K | [27] | |
GdNiO3 | gadolinium nickelate | perovskite orthorhombic a = 0.5492 Å, b = 0.7506 Å, c = 0.5258 Å, V = 216.8 Å3, Z = 4, density = 8.09 | metallic insulator transition=510.9K | [34] | |
Gd2NiO4 | digadolinium nickelate | Orthorhombic a = 3.851 Å, b = 3.851 Å, c = 6.8817 Å, V = 187.5 Å3, Z = 2, density = 7.75 | [35] | ||
BaGd2NiO5 | barium digadolinium nickelate | chain nickellate | ?orthorhombic | low thermal conductance | [36] |
Tb2BaNiO5 | chain nickelate | Orthorhombic | [11] | ||
DyNiO3 | dysprosium nickelate | perovskite orthorhombic a = 0.55 Å, b = 0.7445 Å, c = 0.5212 Å V=213.4 Z=4 density=8.38 | metallic insulator transition=564.1K | [27] [34] [37] | |
Dy2BaNiO5 | chain nickelate | Orthorhombic | [11] | ||
HoNiO3 | holmium nickelate | perovskite orthorhombic a = 3.96 Å, b = 3.96 Å, c = 5.04 Å, V = 212 Å3Z = 4, density=8.51 | metallic insulator transition=560K | [34] | |
Ho2BaNiO5 | chain nickelate | Orthorhombic Immm, a = 3.764 Å, b = 5.761 Å, c=11.336 Å | [11] [38] | ||
ErNiO3 | erbium nickelate | perovskite orthorhombic a = 5.514 Å, b =7.381 Å, c = 5.16 V=201 Z=4 density=8.67 | metallic insulator transition=580K | [34] [39] | |
Er2BaNiO5 | chain nickelate | Orthorhombic Immma = 3.7541 Å, b = 5.7442 Å c=11.3019 Å V=243.71 Å3 Z=2 | [11] [12] [40] | ||
TmNiO3 | thulium nickelate | orthorhombic a = 5.495 Å, b = 7.375 Å, c = 5.149 Å V = 208.7 Z = 4 density = 8.77 | [41] | ||
Tm2BaNiO5 | thulium barium nickelate | Orthorhombic low temperature Pnmaa = 12.2003 Å b = 5.65845 Å c = 6.9745 Å Z = 4; high T: Immma = 3.75128 b = 5.7214 c = 11.2456 | Pnma form is brown Immm form is dark green | [11] [42] | |
YbNiO3 | ytterbium nickelate | Orthorhombic a = 5.496 Å, b = 7.353 Å, c = 5.131 Å Z=4 V=207.4 Å3 density=8.96 | [43] | ||
Yb2BaNiO5 | ytterbium barium nickelate | Orthorhombic Pnma a = 5.6423 Å, b = 6.9545 Å, c = 12.1583 Å V=477.1 Z=4 density=8.66 | Pnma form is brown | [42] | |
LuNiO3 | lutetium nickelate | perovskite a = 5.499 Å, b = 7.356 Å, c = 5.117 Å, V = 207 Å3, Z = 4, density = 9.04 | metallic insulator transition=600K | [34] [44] | |
Lu2BaNiO5 | Orthorhombic Pnma | [12] | |||
TlNiO3 | thallium nickelate(III) | perovskite a = 5.2549 Å, b = 5.3677 Å, c = 7.5620 Å, V = 213.3 Å3 | [45] | ||
PbNiO3 | |||||
BiNiO3 | bismuth nickelate(III) | perovskite triclinic a = 5.3852, b = 5.6498, c = 7.7078 Å, α = 91.9529°, β = 89.8097°, γ = 91.5411, V = 234.29 Å3 | Ni in +2 state, Bi in +3 and +5; stable 5–420K, antiferromagnetic | [46] [47] | |
A perovskite is any material with a crystal structure following the formula ABX3, which was first discovered as the mineral called perovskite, which consists of calcium titanium oxide (CaTiO3). The mineral was first discovered in the Ural mountains of Russia by Gustav Rose in 1839 and named after Russian mineralogist L. A. Perovski (1792–1856). 'A' and 'B' are two positively charged ions (i.e. cations), often of very different sizes, and X is a negatively charged ion (an anion, frequently oxide) that bonds to both cations. The 'A' atoms are generally larger than the 'B' atoms. The ideal cubic structure has the B cation in 6-fold coordination, surrounded by an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. Additional perovskite forms may exist where either/both the A and B sites have a configuration of A1x-1A2x and/or B1y-1B2y and the X may deviate from the ideal coordination configuration as ions within the A and B sites undergo changes in their oxidation states.
A solid oxide fuel cell is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.
Molybdenum trioxide describes a family of inorganic compounds with the formula MoO3(H2O)n where n = 0, 1, 2. The anhydrous compound is produced on the largest scale of any molybdenum compound since it is the main intermediate produced when molybdenum ores are purified. The anhydrous oxide is a precursor to molybdenum metal, an important alloying agent. It is also an important industrial catalyst. It is a yellow solid, although impure samples can appear blue or green.
Nickel(II) oxide is the chemical compound with the formula NiO. It is the principal oxide of nickel. It is classified as a basic metal oxide. Several million kilograms are produced annually of varying quality, mainly as an intermediate in the production of nickel alloys. The mineralogical form of NiO, bunsenite, is very rare. Other nickel oxides have been claimed, for example: Nickel(III) oxide(Ni
2O
3) and NiO
2, but they have yet to be proven by X-ray crystallography in bulk. Nickel(III) oxide nanoparticles have recently (2015) been characterized using powder X-ray diffraction and electron microscopy.
Nickel(II) chromate (NiCrO4) is an acid-soluble compound, red-brown in color, with high tolerances for heat. It and the ions that compose it have been linked to tumor formation and gene mutation, particularly to wildlife.
A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources. Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.
Calcium copper titanate (also abbreviated CCTO, for calcium copper titanium oxide) is an inorganic compound with the formula CaCu3Ti4O12. It is noteworthy for its extremely large dielectric constant (effective relative permittivity) of over 10,000 at room temperature.
Nickel(II) titanate, also known as nickel titanium oxide, is an inorganic compound with the chemical formula NiTiO3. It is a coordination compound between nickel(II), titanium(IV) and oxide ions. It has the appearance of a yellow powder. Nickel(II) titanate has been used as a catalyst for toluene oxidation.
Lanthanum manganite is an inorganic compound with the formula LaMnO3, often abbreviated as LMO. Lanthanum manganite is formed in the perovskite structure, consisting of oxygen octahedra with a central Mn atom. The cubic perovskite structure is distorted into an orthorhombic structure by a strong Jahn–Teller distortion of the oxygen octahedra.
Lanthanum ytterbium oxide is a solid inorganic compound of lanthanum, ytterbium and oxygen with the chemical formula of LaYbO3. This compound adopts the Perovskite structure.
The Nickel oxyacid salts are a class of chemical compounds of nickel with an oxyacid. The compounds include a number of minerals and industrially important nickel compounds.
The nickel organic acid salts are organic acid salts of nickel. In many of these the ionised organic acid acts as a ligand.
A carbonate fluoride, fluoride carbonate, fluorocarbonate or fluocarbonate is a double salt containing both carbonate and fluoride. The salts are usually insoluble in water, and can have more than one kind of metal cation to make more complex compounds. Rare-earth fluorocarbonates are particularly important as ore minerals for the light rare-earth elements lanthanum, cerium and neodymium. Bastnäsite is the most important source of these elements. Other artificial compounds are under investigation as non-linear optical materials and for transparency in the ultraviolet, with effects over a dozen times greater than Potassium dideuterium phosphate.
Oxybismuthides or bismuthide oxides are chemical compounds formally containing the group BiO, with one bismuth and one oxygen atom. The bismuth and oxygen are not bound together as in bismuthates, instead they make a separate presence bound to the cations (metals), and could be considered as a mixed bismuthide-oxide compound. So a compound with OmBin requires cations to balance a negative charge of 2m+3n. The cations will have charges of +2 or +3. The trications are often rare earth elements or actinides. They are in the category of oxypnictide compounds.
An oxyhydride is a mixed anion compound containing both oxide O2− and hydride ions H−. These compounds may be unexpected as the hydrogen and oxygen could be expected to react to form water. But if the metals making up the cations are electropositive enough, and the conditions are reducing enough, solid materials can be made that combine hydrogen and oxygen in the negative ion role.
The telluride oxides or oxytellurides are double salts that contain both telluride and oxide anions. They are in the class of mixed anion compounds.
A selenate selenite is a chemical compound or salt that contains selenite and selenate anions (SeO32- and SeO42-). These are mixed anion compounds. Some have third anions.
Neodymium nickelate is a nickelate of neodymium with a chemical formula NdNiO3. In this compound, the neodymium atom is in the +3 oxidation state.
Iridium compounds are compounds containing the element iridium (Ir). Iridium forms compounds in oxidation states between −3 and +9, but the most common oxidation states are +1, +2, +3, and +4. Well-characterized compounds containing iridium in the +6 oxidation state include IrF6 and the oxides Sr2MgIrO6 and Sr2CaIrO6. iridium(VIII) oxide was generated under matrix isolation conditions at 6 K in argon. The highest oxidation state (+9), which is also the highest recorded for any element, is found in gaseous [IrO4]+.
Neptunium compounds are compounds containg the element neptunium (Np). Neptunium has five ionic oxidation states ranging from +3 to +7 when forming chemical compounds, which can be simultaneously observed in solutions. It is the heaviest actinide that can lose all its valence electrons in a stable compound. The most stable state in solution is +5, but the valence +4 is preferred in solid neptunium compounds. Neptunium metal is very reactive. Ions of neptunium are prone to hydrolysis and formation of coordination compounds.